[Vulkan] Vulkan Buffer
이번 시간에는 색 스펙트럼이 보이는 삼각형을 만들 것이다.
목차
인프런 삼각형님의 '삼각형의 실전! Vulkan 중급' 강의를 참고하였습니다.
😎 [삼각형의 실전! Vulkan 중급] 강의 들으러 가기!
Vulkan Buffer
삼각형을 그리기 위해서 필요한 것

이번에는 왼쪽의 삼각형을 만들 것이다.
왼쪽의 삼각형을 그리기 위해서는 위치 정보와 색상 정보가 필요하다.


일반적으로 Shader에는 Vertex 정보를 직접 저장하지 않는다. 이는 각 모델의 Vertex 정보가 서로 다르기 때문이다.
대신, Vertex 정보는 Buffer에 저장되며, Graphics pipeline은 이 Buffer로부터 Vertex 정보를 읽어들인다.

위의 삼각형을 그리기 위해 버퍼에 저장할 데이터 코드를 작성하면 위의 코드와 같다.
정점의 위치 정보와 색상 정보를 정의한다.
VkBufferCreateInfo 구조체
typedef struct VkBufferCreateInfo { VkStructureType sType; const void* pNext; VkBufferCreateFlags flags; VkDeviceSize size; VkBufferUsageFlags usage; VkSharingMode sharingMode; uint32_t queueFamilyIndexCount; const uint32_t* pQueueFamilyIndices; } VkBufferCreateInfo;
멤버 변수 | 설명 |
sType | 구조체 타입 |
pNext | NULL 또는 확장 기능 구조체의 포인터 |
flags | 일단 0을 사용 |
size | 데이터의 바이트 크기 |
usage | VkBufferUsageFlagBits의 조합 |
sharingMode | 일단 VK_FALSE을 사용 |
queueFamilyIndexCount | 일단 0을 사용 |
pQueueFamilyIndices | 일단 NULL을 사용 |
VkBufferUsageFlagBits 열거형
typedef enum VkBufferUsageFlagBits { VK_BUFFER_USAGE_TRANSFER_SRC_BIT = 0x00000001, VK_BUFFER_USAGE_TRANSFER_DST_BIT = 0x00000002, VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT = 0x00000004, VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT = 0x00000008, VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT = 0x00000010, VK_BUFFER_USAGE_STORAGE_BUFFER_BIT = 0x00000020, VK_BUFFER_USAGE_INDEX_BUFFER_BIT = 0x00000040, VK_BUFFER_USAGE_VERTEX_BUFFER_BIT = 0x00000080, VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT = 0x00000100, } VkBufferUsageFlagBits;
VkBufferUsageFlagBits 열거형을 사용해서 buffer가 어떤 목적으로 쓰일지 명시할 수 있다.
Vulkan 드라이버에서 이 정보를 활용하여 최적화를 수행한다.
VkBufferCreateInfo 구조체를 정의하기 위해서는 VkBufferUsageFlagBits 열거형이 필요하다.
VkBufferCreateInfo 구조체

Vulkan Buffer 생성
VkResult vkCreateBuffer( VkDevice device, const VkBufferCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkBuffer* pBuffer);
멤버 변수 | 설명 |
device | VkDevice |
pCreateInfo | VkBufferCreateInfo 변수의 포인터 |
pAllocator | 일단 NULL을 사용 |
pBuffer | VkBuffer 변수의 포인터 |

Vulkan Buffer 파괴
void vkDestroyBuffer( VkDevice device, VkBuffer buffer, const VkAllocationCallbacks* pAllocator);
멤버 변수 | 설명 |
device | VkDevice |
buffer | VkBuffer |
pAllocator | 일단 NULL을 사용 |

코드
#include ... using namespace std; struct Vector3 { union { float x; float r; }; union { float y; float g; }; union { float z; float b; }; }; struct Vertex { Vector3 position; Vector3 color; }; VkRenderer::VkRenderer(ANativeWindow *window) { // 1. VkInstance 생성 // 2. VkPhysicalDevice 선택 // 3. VkDevice 생성 // 4. VkSurface 생성 // 5. VkSwapchain 생성 mSwapchainImageViews.resize(swapchainImageCount); // ImageView를 Swapchain의 개수만큼 생성 for (auto i = 0; i != swapchainImageCount; ++i) { // 6. VkImageView 생성 } // 7. VkCommandPool 생성 // 8. VkCommandBuffer 할당 // 9. VkFence 생성 // 10. VkSemaphore 생성 // 11. VkRenderPass 생성 mFramebuffers.resize(swapchainImageCount); for (auto i = 0; i != swapchainImageCount; ++i) { // 12. VkFramebuffer 생성 } // 13. Vertex VkShaderModule 생성 // 14. Fragment VkShaderModule 생성 // 15. VkPipelineLayout 생성 // 16. Graphics VkPipeline 생성 // ================================================================================ // 17. Vertex VkBuffer 생성 // ================================================================================ constexpr array<Vertex, 3> vertices{ Vertex{ .position{0.0, -0.5, 0.0}, .color{1.0, 0.0, 0.0} }, Vertex{ .position{0.5, 0.5, 0.0}, .color{0.0, 1.0, 0.0} }, Vertex{ .position{-0.5, 0.5, 0.0}, .color{0.0, 0.0, 1.0} }, }; constexpr VkDeviceSize verticesSize{vertices.size() * sizeof(Vertex)}; VkBufferCreateInfo bufferCreateInfo{ .sType =VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO, .size = verticesSize, .usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT }; VK_CHECK_ERROR(vkCreateBuffer(mDevice, &bufferCreateInfo, nullptr, &mVertexBuffer)); } VkRenderer::~VkRenderer() { vkDestroyBuffer(mDevice, mVertexBuffer, nullptr); ... } void VkRenderer::render() { // 1. 화면에 출력할 수 있는 VkImage 얻기 // 2. VkFence 기다린 후 초기화 // 3. VkCommandBuffer 초기화 // 4. VkCommandBuffer 기록 시작 // 5. VkRenderPass 시작 // 6. Graphics VkPipeline 바인드 // 7. 삼각형 그리기 // 8. VkRenderPass 종료 // 9. Clear 색상 갱신 // 10. VkCommandBuffer 기록 종료 // 11. VkCommandBuffer 제출 // 12. VkImage 화면에 출력 }
전체코드
더보기
// MIT License // // Copyright (c) 2024 Daemyung Jang // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE // SOFTWARE. #include <cassert> #include <array> #include <vector> #include <iomanip> #include "VkRenderer.h" #include "VkUtil.h" #include "AndroidOut.h" using namespace std; struct Vector3 { union { float x; float r; }; union { float y; float g; }; union { float z; float b; }; }; struct Vertex { Vector3 position; Vector3 color; }; VkRenderer::VkRenderer(ANativeWindow *window) { // ================================================================================ // 1. VkInstance 생성 // ================================================================================ // VkApplicationInfo 구조체 정의 VkApplicationInfo applicationInfo{ .sType = VK_STRUCTURE_TYPE_APPLICATION_INFO, .pApplicationName = "Practice Vulkan", .applicationVersion = VK_MAKE_API_VERSION(0, 0, 1, 0), .apiVersion = VK_MAKE_API_VERSION(0, 1, 3, 0) }; // 사용할 수 있는 레이어를 얻어온다. uint32_t instanceLayerCount; VK_CHECK_ERROR(vkEnumerateInstanceLayerProperties(&instanceLayerCount, nullptr)); vector<VkLayerProperties> instanceLayerProperties(instanceLayerCount); VK_CHECK_ERROR(vkEnumerateInstanceLayerProperties(&instanceLayerCount, instanceLayerProperties.data())); // 활성화할 레이어의 이름을 배열로 만든다. vector<const char*> instanceLayerNames; for (const auto &layerProperty : instanceLayerProperties) { instanceLayerNames.push_back(layerProperty.layerName); } uint32_t instanceExtensionCount; // 사용 가능한 InstanceExtension 개수 VK_CHECK_ERROR(vkEnumerateInstanceExtensionProperties(nullptr, &instanceExtensionCount, nullptr)); vector<VkExtensionProperties> instanceExtensionProperties(instanceExtensionCount); VK_CHECK_ERROR(vkEnumerateInstanceExtensionProperties(nullptr, &instanceExtensionCount, instanceExtensionProperties.data())); vector<const char *> instanceExtensionNames; // instanceExtensionName을 담는 배열 for (const auto &properties: instanceExtensionProperties) { if (properties.extensionName == string("VK_KHR_surface") || properties.extensionName == string("VK_KHR_android_surface")) { instanceExtensionNames.push_back(properties.extensionName); } } assert(instanceExtensionNames.size() == 2); // 반드시 2개의 이름이 필요하기 때문에 확인 // sType: 구조체의 타입, pApplicationInfo: 어플리케이션의 이름 // enabledLayerCount, ppEnableLayerNames: 사용할 레이어의 정보를 정의 VkInstanceCreateInfo instanceCreateInfo{ .sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO, .pApplicationInfo = &applicationInfo, .enabledLayerCount = static_cast<uint32_t>(instanceLayerNames.size()), .ppEnabledLayerNames = instanceLayerNames.data(), .enabledExtensionCount = static_cast<uint32_t>(instanceExtensionNames.size()), .ppEnabledExtensionNames = instanceExtensionNames.data() }; // vkCreateInstance로 인스턴스 생성. 생성된 인스턴스가 mInstance에 쓰여진다. VK_CHECK_ERROR(vkCreateInstance(&instanceCreateInfo, nullptr, &mInstance)); // ================================================================================ // 2. VkPhysicalDevice 선택 // ================================================================================ uint32_t physicalDeviceCount; VK_CHECK_ERROR(vkEnumeratePhysicalDevices(mInstance, &physicalDeviceCount, nullptr)); vector<VkPhysicalDevice> physicalDevices(physicalDeviceCount); VK_CHECK_ERROR(vkEnumeratePhysicalDevices(mInstance, &physicalDeviceCount, physicalDevices.data())); // 간단한 예제를 위해 첫 번째 VkPhysicalDevice를 사용 mPhysicalDevice = physicalDevices[0]; VkPhysicalDeviceProperties physicalDeviceProperties; // 이 구조체 안에 GPU에 필요한 모든 정보가 있다. vkGetPhysicalDeviceProperties(mPhysicalDevice, &physicalDeviceProperties); aout << "Selected Physical Device Information ↓" << endl; aout << setw(16) << left << " - Device Name: " << string_view(physicalDeviceProperties.deviceName) << endl; aout << setw(16) << left << " - Device Type: " << vkToString(physicalDeviceProperties.deviceType) << endl; aout << std::hex; aout << setw(16) << left << " - Device ID: " << physicalDeviceProperties.deviceID << endl; aout << setw(16) << left << " - Vendor ID: " << physicalDeviceProperties.vendorID << endl; aout << std::dec; aout << setw(16) << left << " - API Version: " << VK_API_VERSION_MAJOR(physicalDeviceProperties.apiVersion) << "." << VK_API_VERSION_MINOR(physicalDeviceProperties.apiVersion); aout << setw(16) << left << " - Driver Version: " << VK_API_VERSION_MAJOR(physicalDeviceProperties.driverVersion) << "." << VK_API_VERSION_MINOR(physicalDeviceProperties.driverVersion); // ================================================================================ // 3. VkDevice 생성 // ================================================================================ uint32_t queueFamilyPropertiesCount; //--------------------------------------------------------------------------------- //** queueFamily 속성을 조회 // 사용 가능한 queueFamily의 수(=queueFamilyPropertiesCount)를 얻어온다. vkGetPhysicalDeviceQueueFamilyProperties(mPhysicalDevice, &queueFamilyPropertiesCount, nullptr); vector<VkQueueFamilyProperties> queueFamilyProperties(queueFamilyPropertiesCount); // 해당 queueFamily들의 속성을 배열에 얻어온다. vkGetPhysicalDeviceQueueFamilyProperties(mPhysicalDevice, &queueFamilyPropertiesCount, queueFamilyProperties.data()); //--------------------------------------------------------------------------------- // 특정 queueFamilyProperties가 VK_QUEUE_GRAPHICS_BIT를 지원하는지 확인. // 지원하는 queueFamilyProperties를 찾으면 break. queueFamily에 대한 정보는 mQueueFamilyIndex에 저장. for (mQueueFamilyIndex = 0; mQueueFamilyIndex != queueFamilyPropertiesCount; ++mQueueFamilyIndex) { if (queueFamilyProperties[mQueueFamilyIndex].queueFlags & VK_QUEUE_GRAPHICS_BIT) { break; } } // 생성할 큐를 정의 const vector<float> queuePriorities{1.0}; VkDeviceQueueCreateInfo deviceQueueCreateInfo{ .sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO, .queueFamilyIndex = mQueueFamilyIndex, // queueFamilyIndex .queueCount = 1, // 생성할 큐의 개수 .pQueuePriorities = queuePriorities.data() // 큐의 우선순위 }; uint32_t deviceExtensionCount; // 사용 가능한 deviceExtension 개수 VK_CHECK_ERROR(vkEnumerateDeviceExtensionProperties(mPhysicalDevice, nullptr, &deviceExtensionCount, nullptr)); vector<VkExtensionProperties> deviceExtensionProperties(deviceExtensionCount); VK_CHECK_ERROR(vkEnumerateDeviceExtensionProperties(mPhysicalDevice, nullptr, &deviceExtensionCount, deviceExtensionProperties.data())); vector<const char *> deviceExtensionNames; for (const auto &properties: deviceExtensionProperties) { if (properties.extensionName == string("VK_KHR_swapchain")) { deviceExtensionNames.push_back(properties.extensionName); } } assert(deviceExtensionNames.size() == 1); // VK_KHR_swapchain이 반드시 필요하기 때문에 확인 // 생성할 Device 정의 VkDeviceCreateInfo deviceCreateInfo{ .sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO, .queueCreateInfoCount = 1, // 큐의 개수 .pQueueCreateInfos = &deviceQueueCreateInfo, // 생성할 큐의 정보 .enabledExtensionCount = static_cast<uint32_t>(deviceExtensionNames.size()), .ppEnabledExtensionNames = deviceExtensionNames.data() // 활성화하려는 deviceExtension들을 넘겨줌 }; // vkCreateDevice를 호출하여 Device 생성(= mDevice 생성) VK_CHECK_ERROR(vkCreateDevice(mPhysicalDevice, &deviceCreateInfo, nullptr, &mDevice)); // 생성된 Device(= mDevice)로부터 큐를 vkGetDeviceQueue를 호출하여 얻어온다. vkGetDeviceQueue(mDevice, mQueueFamilyIndex, 0, &mQueue); // ================================================================================ // 4. VkSurface 생성 // ================================================================================ VkAndroidSurfaceCreateInfoKHR surfaceCreateInfo{ .sType = VK_STRUCTURE_TYPE_ANDROID_SURFACE_CREATE_INFO_KHR, .window = window }; // surface 생성. VK_CHECK_ERROR(vkCreateAndroidSurfaceKHR(mInstance, &surfaceCreateInfo, nullptr, &mSurface)); VkBool32 supported; // surface 지원 여부 VK_CHECK_ERROR(vkGetPhysicalDeviceSurfaceSupportKHR(mPhysicalDevice, mQueueFamilyIndex, mSurface, &supported)); // 지원 여부를 받아옴. assert(supported); // ================================================================================ // 5. VkSwapchain 생성 // ================================================================================ VkSurfaceCapabilitiesKHR surfaceCapabilities; VK_CHECK_ERROR(vkGetPhysicalDeviceSurfaceCapabilitiesKHR(mPhysicalDevice, mSurface, &surfaceCapabilities)); VkCompositeAlphaFlagBitsKHR compositeAlpha = VK_COMPOSITE_ALPHA_FLAG_BITS_MAX_ENUM_KHR; for (auto i = 0; i <= 4; ++i) { if (auto flag = 0x1u << i; surfaceCapabilities.supportedCompositeAlpha & flag) { compositeAlpha = static_cast<VkCompositeAlphaFlagBitsKHR>(flag); break; } } assert(compositeAlpha != VK_COMPOSITE_ALPHA_FLAG_BITS_MAX_ENUM_KHR); VkImageUsageFlags swapchainImageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT; assert(surfaceCapabilities.supportedUsageFlags & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT); uint32_t surfaceFormatCount = 0; VK_CHECK_ERROR(vkGetPhysicalDeviceSurfaceFormatsKHR(mPhysicalDevice, mSurface, &surfaceFormatCount, nullptr)); vector<VkSurfaceFormatKHR> surfaceFormats(surfaceFormatCount); VK_CHECK_ERROR(vkGetPhysicalDeviceSurfaceFormatsKHR(mPhysicalDevice, mSurface, &surfaceFormatCount, surfaceFormats.data())); uint32_t surfaceFormatIndex = VK_FORMAT_MAX_ENUM; for (auto i = 0; i != surfaceFormatCount; ++i) { if (surfaceFormats[i].format == VK_FORMAT_R8G8B8A8_UNORM) { surfaceFormatIndex = i; break; } } assert(surfaceFormatIndex != VK_FORMAT_MAX_ENUM); uint32_t presentModeCount; VK_CHECK_ERROR(vkGetPhysicalDeviceSurfacePresentModesKHR(mPhysicalDevice, mSurface, &presentModeCount, nullptr)); vector<VkPresentModeKHR> presentModes(presentModeCount); VK_CHECK_ERROR(vkGetPhysicalDeviceSurfacePresentModesKHR(mPhysicalDevice, mSurface, &presentModeCount, presentModes.data())); uint32_t presentModeIndex = VK_PRESENT_MODE_MAX_ENUM_KHR; for (auto i = 0; i != presentModeCount; ++i) { if (presentModes[i] == VK_PRESENT_MODE_FIFO_KHR) { presentModeIndex = i; break; } } assert(presentModeIndex != VK_PRESENT_MODE_MAX_ENUM_KHR); VkSwapchainCreateInfoKHR swapchainCreateInfo{ .sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR, .surface = mSurface, .minImageCount = surfaceCapabilities.minImageCount, .imageFormat = surfaceFormats[surfaceFormatIndex].format, .imageColorSpace = surfaceFormats[surfaceFormatIndex].colorSpace, .imageExtent = surfaceCapabilities.currentExtent, .imageArrayLayers = 1, .imageUsage = swapchainImageUsage, .imageSharingMode = VK_SHARING_MODE_EXCLUSIVE, .preTransform = surfaceCapabilities.currentTransform, .compositeAlpha = compositeAlpha, .presentMode = presentModes[presentModeIndex] }; VK_CHECK_ERROR(vkCreateSwapchainKHR(mDevice, &swapchainCreateInfo, nullptr, &mSwapchain)); uint32_t swapchainImageCount; VK_CHECK_ERROR(vkGetSwapchainImagesKHR(mDevice, mSwapchain, &swapchainImageCount, nullptr)); mSwapchainImages.resize(swapchainImageCount); VK_CHECK_ERROR(vkGetSwapchainImagesKHR(mDevice, mSwapchain, &swapchainImageCount, mSwapchainImages.data())); mSwapchainImageViews.resize(swapchainImageCount); // ImageView를 Swapchain의 개수만큼 생성 for (auto i = 0; i != swapchainImageCount; ++i) { // ================================================================================ // 6. VkImageView 생성 // ================================================================================ VkImageViewCreateInfo imageViewCreateInfo{ // 생성할 ImageView를 정의 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, .image = mSwapchainImages[i], .viewType = VK_IMAGE_VIEW_TYPE_2D, .format = surfaceFormats[surfaceFormatIndex].format, // Swapchain 이미지 포맷과 동일한 포맷으로 설정 .components = { .r = VK_COMPONENT_SWIZZLE_R, .g = VK_COMPONENT_SWIZZLE_G, .b = VK_COMPONENT_SWIZZLE_B, .a = VK_COMPONENT_SWIZZLE_A, }, .subresourceRange = { // 모든 이미지에 대해서 이 이미지 뷰가 접근할 수 있도록 설정 .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .baseMipLevel = 0, .levelCount = 1, .baseArrayLayer = 0, .layerCount = 1 } }; VK_CHECK_ERROR(vkCreateImageView(mDevice, &imageViewCreateInfo, nullptr, &mSwapchainImageViews[i])); // mSwapchainImageViews[i] 생성 } // ================================================================================ // 7. VkCommandPool 생성 // ================================================================================ VkCommandPoolCreateInfo commandPoolCreateInfo{ .sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO, .flags = VK_COMMAND_POOL_CREATE_TRANSIENT_BIT | // command buffer가 자주 변경될 것임을 알려줌 VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT, // command buffer를 개별적으로 초기화 가능하게 설정 .queueFamilyIndex = mQueueFamilyIndex }; VK_CHECK_ERROR(vkCreateCommandPool(mDevice, &commandPoolCreateInfo, nullptr, &mCommandPool)); // mCommandPool 생성 // ================================================================================ // 8. VkCommandBuffer 할당 // ================================================================================ VkCommandBufferAllocateInfo commandBufferAllocateInfo{ // 할당하려는 command buffer 정의 .sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO, .commandPool = mCommandPool, .level = VK_COMMAND_BUFFER_LEVEL_PRIMARY, .commandBufferCount = 1 }; VK_CHECK_ERROR(vkAllocateCommandBuffers(mDevice, &commandBufferAllocateInfo, &mCommandBuffer)); // ================================================================================ // 9. VkFence 생성 // ================================================================================ VkFenceCreateInfo fenceCreateInfo{ .sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO }; // 생성할 Fence의 정보를 해당 구조체에서 정의 VK_CHECK_ERROR(vkCreateFence(mDevice, &fenceCreateInfo, nullptr, &mFence)); // mFence 생성. flag에 아무것도 넣어주지 않았기 때문에 생성된 Fence의 초기 상태는 Unsignal 상태다. // ================================================================================ // 10. VkSemaphore 생성 // ================================================================================ VkSemaphoreCreateInfo semaphoreCreateInfo{ .sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO, }; VK_CHECK_ERROR(vkCreateSemaphore(mDevice, &semaphoreCreateInfo, nullptr, &mSemaphore)); // ================================================================================ // 11. VkRenderPass 생성 // ================================================================================ VkAttachmentDescription attachmentDescription{ .format = surfaceFormats[surfaceFormatIndex].format, .samples = VK_SAMPLE_COUNT_1_BIT, .loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR, .storeOp = VK_ATTACHMENT_STORE_OP_STORE, .initialLayout = VK_IMAGE_LAYOUT_UNDEFINED, .finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR }; VkAttachmentReference attachmentReference{ .attachment = 0, .layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL }; VkSubpassDescription subpassDescription{ .pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS, .colorAttachmentCount = 1, .pColorAttachments = &attachmentReference }; VkRenderPassCreateInfo renderPassCreateInfo{ .sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO, .attachmentCount = 1, .pAttachments = &attachmentDescription, .subpassCount = 1, .pSubpasses = &subpassDescription }; VK_CHECK_ERROR(vkCreateRenderPass(mDevice, &renderPassCreateInfo, nullptr, &mRenderPass)); // mRenderPass 생성. mFramebuffers.resize(swapchainImageCount); for (auto i = 0; i != swapchainImageCount; ++i) { // ================================================================================ // 12. VkFramebuffer 생성 // ================================================================================ VkFramebufferCreateInfo framebufferCreateInfo{ .sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO, .renderPass = mRenderPass, .attachmentCount = 1, .pAttachments = &mSwapchainImageViews[i], // ImageView .width = mSwapchainImageExtent.width, .height = mSwapchainImageExtent.height, .layers = 1 }; VK_CHECK_ERROR(vkCreateFramebuffer(mDevice, &framebufferCreateInfo, nullptr, &mFramebuffers[i]));// mFramebuffers[i] 생성 } // ================================================================================ // 13. Vertex VkShaderModule 생성 // ================================================================================ string_view vertexShaderCode = { "#version 310 es \n" " \n" "void main() { \n" " vec2 pos[3] = vec2[3](vec2(-0.5, 0.5), \n" " vec2( 0.5, 0.5), \n" " vec2( 0.0, -0.5)); \n" " \n" " gl_Position = vec4(pos[gl_VertexIndex], 0.0, 1.0); \n" "} \n" }; std::vector<uint32_t> vertexShaderBinary; // VKSL을 SPIR-V로 변환. VK_CHECK_ERROR(vkCompileShader(vertexShaderCode, VK_SHADER_TYPE_VERTEX, &vertexShaderBinary)); VkShaderModuleCreateInfo vertexShaderModuleCreateInfo{ .sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO, .codeSize = vertexShaderBinary.size() * sizeof(uint32_t), // 바이트 단위. .pCode = vertexShaderBinary.data() }; VK_CHECK_ERROR(vkCreateShaderModule(mDevice, &vertexShaderModuleCreateInfo, nullptr, &mVertexShaderModule)); // mVertexShaderModule 생성. // ================================================================================ // 14. Fragment VkShaderModule 생성 // ================================================================================ string_view fragmentShaderCode = { "#version 310 es \n" "precision mediump float; \n" " \n" "layout(location = 0) out vec4 fragmentColor; \n" " \n" "void main() { \n" " fragmentColor = vec4(1.0, 0.0, 0.0, 1.0); \n" "} \n" }; std::vector<uint32_t> fragmentShaderBinary; VK_CHECK_ERROR(vkCompileShader(fragmentShaderCode, VK_SHADER_TYPE_FRAGMENT, &fragmentShaderBinary)); VkShaderModuleCreateInfo fragmentShaderModuleCreateInfo{ .sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO, .codeSize = fragmentShaderBinary.size() * sizeof(uint32_t), .pCode = fragmentShaderBinary.data() }; VK_CHECK_ERROR(vkCreateShaderModule(mDevice, &fragmentShaderModuleCreateInfo, nullptr, &mFragmentShaderModule)); // ================================================================================ // 15. VkPipelineLayout 생성 // ================================================================================ VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo{ .sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO }; VK_CHECK_ERROR(vkCreatePipelineLayout(mDevice, &pipelineLayoutCreateInfo, nullptr, &mPipelineLayout)); // ================================================================================ // 16. Graphics VkPipeline 생성 // ================================================================================ array<VkPipelineShaderStageCreateInfo, 2> pipelineShaderStageCreateInfos{ VkPipelineShaderStageCreateInfo{ .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, .stage = VK_SHADER_STAGE_VERTEX_BIT, .module = mVertexShaderModule, .pName = "main" }, VkPipelineShaderStageCreateInfo{ .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, .stage = VK_SHADER_STAGE_FRAGMENT_BIT, .module = mFragmentShaderModule, .pName = "main" } }; VkPipelineVertexInputStateCreateInfo pipelineVertexInputStateCreateInfo{ .sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO }; VkPipelineInputAssemblyStateCreateInfo pipelineInputAssemblyStateCreateInfo{ .sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO, .topology =VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST }; VkViewport viewport{ .width = static_cast<float>(mSwapchainImageExtent.width), .height = static_cast<float>(mSwapchainImageExtent.height), .maxDepth = 1.0f }; VkRect2D scissor{ .extent = mSwapchainImageExtent }; VkPipelineViewportStateCreateInfo pipelineViewportStateCreateInfo{ .sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO, .viewportCount = 1, .pViewports = &viewport, .scissorCount = 1, .pScissors = &scissor }; VkPipelineRasterizationStateCreateInfo pipelineRasterizationStateCreateInfo{ .sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO, .polygonMode = VK_POLYGON_MODE_FILL, .cullMode = VK_CULL_MODE_NONE, .lineWidth = 1.0f }; VkPipelineMultisampleStateCreateInfo pipelineMultisampleStateCreateInfo{ .sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO, .rasterizationSamples = VK_SAMPLE_COUNT_1_BIT }; VkPipelineDepthStencilStateCreateInfo pipelineDepthStencilStateCreateInfo{ .sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO }; VkPipelineColorBlendAttachmentState pipelineColorBlendAttachmentState{ .colorWriteMask = VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT }; VkPipelineColorBlendStateCreateInfo pipelineColorBlendStateCreateInfo{ .sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO, .attachmentCount = 1, .pAttachments = &pipelineColorBlendAttachmentState }; VkGraphicsPipelineCreateInfo graphicsPipelineCreateInfo{ .sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO, .stageCount = pipelineShaderStageCreateInfos.size(), .pStages = pipelineShaderStageCreateInfos.data(), .pVertexInputState = &pipelineVertexInputStateCreateInfo, .pInputAssemblyState = &pipelineInputAssemblyStateCreateInfo, .pViewportState = &pipelineViewportStateCreateInfo, .pRasterizationState = &pipelineRasterizationStateCreateInfo, .pMultisampleState = &pipelineMultisampleStateCreateInfo, .pDepthStencilState = &pipelineDepthStencilStateCreateInfo, .pColorBlendState = &pipelineColorBlendStateCreateInfo, .layout = mPipelineLayout, .renderPass = mRenderPass }; VK_CHECK_ERROR(vkCreateGraphicsPipelines(mDevice, VK_NULL_HANDLE, 1, &graphicsPipelineCreateInfo, nullptr, &mPipeline)); // ================================================================================ // 17. Vertex VkBuffer 생성 // ================================================================================ constexpr array<Vertex, 3> vertices{ Vertex{ .position{0.0, -0.5, 0.0}, .color{1.0, 0.0, 0.0} }, Vertex{ .position{0.5, 0.5, 0.0}, .color{0.0, 1.0, 0.0} }, Vertex{ .position{-0.5, 0.5, 0.0}, .color{0.0, 0.0, 1.0} }, }; constexpr VkDeviceSize verticesSize{vertices.size() * sizeof(Vertex)}; VkBufferCreateInfo bufferCreateInfo{ .sType =VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO, .size = verticesSize, .usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT }; VK_CHECK_ERROR(vkCreateBuffer(mDevice, &bufferCreateInfo, nullptr, &mVertexBuffer)); } VkRenderer::~VkRenderer() { vkDestroyBuffer(mDevice, mVertexBuffer, nullptr); vkDestroyPipelineLayout(mDevice, mPipelineLayout, nullptr); vkDestroyPipeline(mDevice, mPipeline, nullptr); vkDestroyShaderModule(mDevice, mVertexShaderModule, nullptr); vkDestroyShaderModule(mDevice, mFragmentShaderModule, nullptr); for (auto framebuffer : mFramebuffers) { vkDestroyFramebuffer(mDevice, framebuffer, nullptr); } mFramebuffers.clear(); vkDestroyRenderPass(mDevice, mRenderPass, nullptr); for (auto imageView : mSwapchainImageViews) { vkDestroyImageView(mDevice, imageView, nullptr); } mSwapchainImageViews.clear(); vkDestroySemaphore(mDevice, mSemaphore, nullptr); vkDestroyFence(mDevice, mFence, nullptr); vkFreeCommandBuffers(mDevice, mCommandPool, 1, &mCommandBuffer); vkDestroyCommandPool(mDevice, mCommandPool, nullptr); vkDestroySwapchainKHR(mDevice, mSwapchain, nullptr); vkDestroySurfaceKHR(mInstance, mSurface, nullptr); vkDestroyDevice(mDevice, nullptr); // Device 파괴. queue의 경우 Device를 생성하면서 생겼기 때문에 따로 파괴하는 API가 존재하지 않는다. vkDestroyInstance(mInstance, nullptr); } void VkRenderer::render() { // ================================================================================ // 1. 화면에 출력할 수 있는 VkImage 얻기 // ================================================================================ uint32_t swapchainImageIndex; VK_CHECK_ERROR(vkAcquireNextImageKHR(mDevice, mSwapchain, UINT64_MAX, VK_NULL_HANDLE, mFence, // Fence 설정 &swapchainImageIndex)); // 사용 가능한 이미지 변수에 담기 //auto swapchainImage = mSwapchainImages[swapchainImageIndex]; // swapchainImage에 더 이상 직접 접근하지 않으므로 이제 사용X auto framebuffer = mFramebuffers[swapchainImageIndex]; // ================================================================================ // 2. VkFence 기다린 후 초기화 // ================================================================================ // mFence가 Signal 될 때까지 기다린다. VK_CHECK_ERROR(vkWaitForFences(mDevice, 1, &mFence, VK_TRUE, UINT64_MAX)); // mFence가 Siganl이 되면 vkResetFences를 호출해서 Fence의 상태를 다시 초기화한다. // 초기화하는 이유: vkAcquireNextImageKHR을 호출할 때 이 Fence의 상태는 항상 Unsignal 상태여야 하기 때문이다. VK_CHECK_ERROR(vkResetFences(mDevice, 1, &mFence)); // ================================================================================ // 3. VkCommandBuffer 초기화 // ================================================================================ vkResetCommandBuffer(mCommandBuffer, 0); // ================================================================================ // 4. VkCommandBuffer 기록 시작 // ================================================================================ VkCommandBufferBeginInfo commandBufferBeginInfo{ .sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO, .flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT // 한 번만 기록되고 다시 리셋 될 것이라는 의미 }; // mCommandBuffer를 기록중인 상태로 변경. VK_CHECK_ERROR(vkBeginCommandBuffer(mCommandBuffer, &commandBufferBeginInfo)); // ================================================================================ // 5. VkRenderPass 시작 // ================================================================================ VkRenderPassBeginInfo renderPassBeginInfo{ .sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO, .renderPass = mRenderPass, .framebuffer = framebuffer, .renderArea{ .extent = mSwapchainImageExtent }, .clearValueCount = 1, .pClearValues = &mClearValue }; vkCmdBeginRenderPass(mCommandBuffer, &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); // ================================================================================ // 6. Graphics VkPipeline 바인드 // ================================================================================ vkCmdBindPipeline(mCommandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, mPipeline); // ================================================================================ // 7. 삼각형 그리기 // ================================================================================ vkCmdDraw(mCommandBuffer, 3, 1, 0, 0); // ================================================================================ // 8. VkRenderPass 종료 // ================================================================================ vkCmdEndRenderPass(mCommandBuffer); // ================================================================================ // 9. Clear 색상 갱신 // ================================================================================ for (auto i = 0; i != 4; ++i) { mClearValue.color.float32[i] = fmodf(mClearValue.color.float32[i] + 0.01, 1.0); } // ================================================================================ // 10. VkCommandBuffer 기록 종료 // ================================================================================ VK_CHECK_ERROR(vkEndCommandBuffer(mCommandBuffer)); // mCommandBuffer는 Executable 상태가 된다. // ================================================================================ // 11. VkCommandBuffer 제출 // ================================================================================ VkSubmitInfo submitInfo{ .sType = VK_STRUCTURE_TYPE_SUBMIT_INFO, .commandBufferCount = 1, .pCommandBuffers = &mCommandBuffer, .signalSemaphoreCount = 1, .pSignalSemaphores = &mSemaphore }; // submitInfo 구조체를 넘김으로써 commandBuffer 정보를 queue에 제출 VK_CHECK_ERROR(vkQueueSubmit(mQueue, 1, &submitInfo, VK_NULL_HANDLE)); // ================================================================================ // 12. VkImage 화면에 출력 // ================================================================================ VkPresentInfoKHR presentInfo{ .sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR, .waitSemaphoreCount = 1, .pWaitSemaphores = &mSemaphore, .swapchainCount = 1, .pSwapchains = &mSwapchain, .pImageIndices = &swapchainImageIndex }; VK_CHECK_ERROR(vkQueuePresentKHR(mQueue, &presentInfo)); // 화면에 출력. VK_CHECK_ERROR(vkQueueWaitIdle(mQueue)); }
'⭐ Vulkan & CMake > Vulkan' 카테고리의 다른 글
[Vulkan] Hello Triangle (0) | 2024.09.14 |
---|---|
[Vulkan] Vulkan Memory (0) | 2024.09.12 |
[Vulkan] Vulkan Graphics pipeline 벌컨 그래픽스 파이프라인 (0) | 2024.09.11 |
[Vulkan] Vulkan Shader module (0) | 2024.09.10 |
[Vulkan] VKSL 주의사항 (0) | 2024.09.10 |
댓글
이 글 공유하기
다른 글
-
[Vulkan] Hello Triangle
[Vulkan] Hello Triangle
2024.09.14 -
[Vulkan] Vulkan Memory
[Vulkan] Vulkan Memory
2024.09.12Vulkan은 애플리케이션이 메모리를 직접 제어할 수 있게 하여 성능을 극대화할 수 있지만 메모리에 대한 정확한 이해가 없이 코드를 작성하면 오히려 비효율적으로 동작할 수도 있다. 목차 Vulkan Memory Vulkan Memory란? Vulkan Memory는 실제 메모리 공간을 대표하는 리소스다. (OpenGL에는 없다) Vulkan은 OpenGL과 달리 Memory를 독립된 리소스로 정의했다. 이러한 설계는 Memory 할당이 매우 무거운 작업이기 때문에 Vulkan에서는 Memory의 재활용을 하기 위함이다. (이러한 설계는 메모리 할당이 매우 무거운 작업이기 때문에 개발자가 직접 메모리를 관리하는것이 더 효율적일 것이라는 판단에서 비롯되었다. 흐음…. 과연 그럴까? ) 위의… -
[Vulkan] Vulkan Graphics pipeline 벌컨 그래픽스 파이프라인
[Vulkan] Vulkan Graphics pipeline 벌컨 그래픽스 파이프라인
2024.09.11 -
[Vulkan] Vulkan Shader module
[Vulkan] Vulkan Shader module
2024.09.10목차 Vulkan Shader module Vulkan Shader module이란? Vulkan Device에 의해 실행될 쉐이더 코드를 포함하는 리소스다. VkShaderModuleCreateInfo 구조체 typedef struct VkShaderModuleCreateInfo { VkStructureType sType; const void* pNext; VkShaderModuleCreateFlags flags; size_t codeSize; const uint32_t* pCode;} VkShaderModuleCreateInfo; 멤버 변수 설명 sType 구조체의 타입 pNext NULL 또는 확장 기능 구조체의 포인터 flags 일단 0을 사용…
댓글을 사용할 수 없습니다.