[Vulkan] Vulkan Shader module
목차
Vulkan Shader module
Vulkan Shader module이란?
Vulkan Device에 의해 실행될 쉐이더 코드를 포함하는 리소스다.
VkShaderModuleCreateInfo 구조체
typedef struct VkShaderModuleCreateInfo { VkStructureType sType; const void* pNext; VkShaderModuleCreateFlags flags; size_t codeSize; const uint32_t* pCode; } VkShaderModuleCreateInfo;
멤버 변수 | 설명 |
sType | 구조체의 타입 |
pNext | NULL 또는 확장 기능 구조체의 포인터 |
flags | 일단 0을 사용 |
codeSize | SPIR-V의 바이트 크기 |
pCode | SPIR-V의 포인터 |

' .codeSize = 벡터의 크기와 타입의 크기를 곱 '해서 바이트 사이즈를 구했다. 바이트 단위인 것을 명심하자.
Vulkan Shader module 생성
VkResult vkCreateShaderModule( VkDevice device, const VkShaderModuleCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkShaderModule* pShaderModule);
파라미터 | 설명 |
device | VkDevice |
pCreateInfo | VkShaderModuleCreateInfo 변수의 포인터 |
pAllocator | 일단 NULL을 사용 |
pShaderModule | VkShaderModule 변수의 포인터 |

Vulkan Shader module 파괴
void vkDestroyShaderModule( VkDevice device, VkShaderModule shaderModule, const VkAllocationCallbacks* pAllocator);
파라미터 | 설명 |
device | VkDevice |
shaderModule | VkShaderModule |
pAllocator | 일단 NULL을 사용 |

NDC 좌표계

x축, y축, z축
Vulkan의 좌표계에서 y축은 아래를 향한다. 이는 하드웨어에 더 친화적이다.
왜냐하면 메모리 인덱스는 위에서 아래로 증가하며 이는 메모리의 y축의 방향이 아래쪽이 양의 방향임을 의미하기 때문이다. y축의 양의 방향이 아래인 것은 Vulkan과 메모리가 동일하다.
gl_VertexIndex 도입
gl_VertexIndex는 현재 정점의 인덱스를 나타낸다.
gl_VertexIndex는 ESSL 300 이후 버전에서 지원하기 시작한 변수다.

예들 들어, glDrawArrays의 함수를 호출할 때 그릴 정점의 수를 3으로 설정한다. 그러면 Vertex Shader의 각 스레드에서 Vertex Index의 값이 0, 1, 2로 설정된다. 이 정보를 삼각형에 적용하면 위의 그림과 같이 설정된다. 삼각형의 각 정점에 고유한 Index가 설정된다.
Vertex 쉐이더

gl_FragColor 삭제 (더 이상 사용하지 않음 )
gl_FragColor는 단일 렌더 타겟을 가정하여 설계되었다.
하지만 MRT(Multi Render Target)을 적용하기 시작하면서부터 gl_FragColor은 더 이상 사용하지 않는다.
따라서 이제는 Fragment Shader에서 location 키워드를 사용해서 출력할 Attachment 타겟의 위치를 직접 정의해야 한다.
예를 들어, Framebuffer에 아래와 같이 4개의 attachment가 있다면 첫 번째 attachment의 값을 쓰고 싶다면 location을 0으로 설정하고 마지막 Attachment의 값을 쓰고 싶다면 location을 3으로 설정해야 한다. location의 번호는 순차적으로 증가한다.

Fragment 쉐이더

코드
#include ... using namespace std; VkRenderer::VkRenderer(ANativeWindow *window) { // 1. VkInstance 생성 // 2. VkPhysicalDevice 선택 // 3. VkDevice 생성 // 4. VkSurface 생성 // 5. VkSwapchain 생성 mSwapchainImageViews.resize(swapchainImageCount); // ImageView를 Swapchain의 개수만큼 생성 for (auto i = 0; i != swapchainImageCount; ++i) { // 6. VkImageView 생성 } // 7. VkCommandPool 생성 // 8. VkCommandBuffer 할당 // 9. VkFence 생성 // 10. VkSemaphore 생성 // 11. VkRenderPass 생성 mFramebuffers.resize(swapchainImageCount); for (auto i = 0; i != swapchainImageCount; ++i) { // 12. VkFramebuffer 생성 } // ================================================================================ // 13. Vertex VkShaderModule 생성 // ================================================================================ string_view vertexShaderCode = { "#version 310 es \n" " \n" "void main() { \n" " vec2 pos[3] = vec2[3](vec2(-0.5, 0.5), \n" " vec2( 0.5, 0.5), \n" " vec2( 0.0, -0.5)); \n" " \n" " gl_Position = vec4(pos[gl_VertexIndex], 0.0, 1.0); \n" "} \n" }; std::vector<uint32_t> vertexShaderBinary; // VKSL을 SPIR-V로 변환. VK_CHECK_ERROR(vkCompileShader(vertexShaderCode, VK_SHADER_TYPE_VERTEX, &vertexShaderBinary)); VkShaderModuleCreateInfo vertexShaderModuleCreateInfo{ .sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO, .codeSize = vertexShaderBinary.size() * sizeof(uint32_t), // 바이트 단위. .pCode = vertexShaderBinary.data() }; VK_CHECK_ERROR(vkCreateShaderModule(mDevice, &vertexShaderModuleCreateInfo, nullptr, &mVertexShaderModule)); // mVertexShaderModule 생성. // ================================================================================ // 14. Fragment VkShaderModule 생성 // ================================================================================ string_view fragmentShaderCode = { "#version 310 es \n" "precision mediump float; \n" " \n" "layout(location = 0) out vec4 fragmentColor; \n" " \n" "void main() { \n" " fragmentColor = vec4(1.0, 0.0, 0.0, 1.0); \n" "} \n" }; std::vector<uint32_t> fragmentShaderBinary; VK_CHECK_ERROR(vkCompileShader(fragmentShaderCode, VK_SHADER_TYPE_FRAGMENT, &fragmentShaderBinary)); VkShaderModuleCreateInfo fragmentShaderModuleCreateInfo{ .sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO, .codeSize = fragmentShaderBinary.size() * sizeof(uint32_t), .pCode = fragmentShaderBinary.data() }; VK_CHECK_ERROR(vkCreateShaderModule(mDevice, &fragmentShaderModuleCreateInfo, nullptr, &mFragmentShaderModule)); } VkRenderer::~VkRenderer() { vkDestroyShaderModule(mDevice, mVertexShaderModule, nullptr); vkDestroyShaderModule(mDevice, mFragmentShaderModule, nullptr); ... } void VkRenderer::render() { // 1. 화면에 출력할 수 있는 VkImage 얻기 // 2. VkFence 기다린 후 초기화 // 3. VkCommandBuffer 초기화 // 4. VkCommandBuffer 기록 시작 // 5. VkRenderPass 시작 // 6. VkRenderPass 종료 // 7. Clear 색상 갱신 // 8. VkCommandBuffer 기록 종료 // 9. VkCommandBuffer 제출 // 10. VkImage 화면에 출력 }
전체코드
// MIT License // // Copyright (c) 2024 Daemyung Jang // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE // SOFTWARE. #include <cassert> #include <array> #include <vector> #include <iomanip> #include "VkRenderer.h" #include "VkUtil.h" #include "AndroidOut.h" using namespace std; VkRenderer::VkRenderer(ANativeWindow *window) { // ================================================================================ // 1. VkInstance 생성 // ================================================================================ // VkApplicationInfo 구조체 정의 VkApplicationInfo applicationInfo{ .sType = VK_STRUCTURE_TYPE_APPLICATION_INFO, .pApplicationName = "Practice Vulkan", .applicationVersion = VK_MAKE_API_VERSION(0, 0, 1, 0), .apiVersion = VK_MAKE_API_VERSION(0, 1, 3, 0) }; // 사용할 수 있는 레이어를 얻어온다. uint32_t instanceLayerCount; VK_CHECK_ERROR(vkEnumerateInstanceLayerProperties(&instanceLayerCount, nullptr)); vector<VkLayerProperties> instanceLayerProperties(instanceLayerCount); VK_CHECK_ERROR(vkEnumerateInstanceLayerProperties(&instanceLayerCount, instanceLayerProperties.data())); // 활성화할 레이어의 이름을 배열로 만든다. vector<const char*> instanceLayerNames; for (const auto &layerProperty : instanceLayerProperties) { instanceLayerNames.push_back(layerProperty.layerName); } uint32_t instanceExtensionCount; // 사용 가능한 InstanceExtension 개수 VK_CHECK_ERROR(vkEnumerateInstanceExtensionProperties(nullptr, &instanceExtensionCount, nullptr)); vector<VkExtensionProperties> instanceExtensionProperties(instanceExtensionCount); VK_CHECK_ERROR(vkEnumerateInstanceExtensionProperties(nullptr, &instanceExtensionCount, instanceExtensionProperties.data())); vector<const char *> instanceExtensionNames; // instanceExtensionName을 담는 배열 for (const auto &properties: instanceExtensionProperties) { if (properties.extensionName == string("VK_KHR_surface") || properties.extensionName == string("VK_KHR_android_surface")) { instanceExtensionNames.push_back(properties.extensionName); } } assert(instanceExtensionNames.size() == 2); // 반드시 2개의 이름이 필요하기 때문에 확인 // sType: 구조체의 타입, pApplicationInfo: 어플리케이션의 이름 // enabledLayerCount, ppEnableLayerNames: 사용할 레이어의 정보를 정의 VkInstanceCreateInfo instanceCreateInfo{ .sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO, .pApplicationInfo = &applicationInfo, .enabledLayerCount = static_cast<uint32_t>(instanceLayerNames.size()), .ppEnabledLayerNames = instanceLayerNames.data(), .enabledExtensionCount = static_cast<uint32_t>(instanceExtensionNames.size()), .ppEnabledExtensionNames = instanceExtensionNames.data() }; // vkCreateInstance로 인스턴스 생성. 생성된 인스턴스가 mInstance에 쓰여진다. VK_CHECK_ERROR(vkCreateInstance(&instanceCreateInfo, nullptr, &mInstance)); // ================================================================================ // 2. VkPhysicalDevice 선택 // ================================================================================ uint32_t physicalDeviceCount; VK_CHECK_ERROR(vkEnumeratePhysicalDevices(mInstance, &physicalDeviceCount, nullptr)); vector<VkPhysicalDevice> physicalDevices(physicalDeviceCount); VK_CHECK_ERROR(vkEnumeratePhysicalDevices(mInstance, &physicalDeviceCount, physicalDevices.data())); // 간단한 예제를 위해 첫 번째 VkPhysicalDevice를 사용 mPhysicalDevice = physicalDevices[0]; VkPhysicalDeviceProperties physicalDeviceProperties; // 이 구조체 안에 GPU에 필요한 모든 정보가 있다. vkGetPhysicalDeviceProperties(mPhysicalDevice, &physicalDeviceProperties); aout << "Selected Physical Device Information ↓" << endl; aout << setw(16) << left << " - Device Name: " << string_view(physicalDeviceProperties.deviceName) << endl; aout << setw(16) << left << " - Device Type: " << vkToString(physicalDeviceProperties.deviceType) << endl; aout << std::hex; aout << setw(16) << left << " - Device ID: " << physicalDeviceProperties.deviceID << endl; aout << setw(16) << left << " - Vendor ID: " << physicalDeviceProperties.vendorID << endl; aout << std::dec; aout << setw(16) << left << " - API Version: " << VK_API_VERSION_MAJOR(physicalDeviceProperties.apiVersion) << "." << VK_API_VERSION_MINOR(physicalDeviceProperties.apiVersion); aout << setw(16) << left << " - Driver Version: " << VK_API_VERSION_MAJOR(physicalDeviceProperties.driverVersion) << "." << VK_API_VERSION_MINOR(physicalDeviceProperties.driverVersion); // ================================================================================ // 3. VkDevice 생성 // ================================================================================ uint32_t queueFamilyPropertiesCount; //--------------------------------------------------------------------------------- //** queueFamily 속성을 조회 // 사용 가능한 queueFamily의 수(=queueFamilyPropertiesCount)를 얻어온다. vkGetPhysicalDeviceQueueFamilyProperties(mPhysicalDevice, &queueFamilyPropertiesCount, nullptr); vector<VkQueueFamilyProperties> queueFamilyProperties(queueFamilyPropertiesCount); // 해당 queueFamily들의 속성을 배열에 얻어온다. vkGetPhysicalDeviceQueueFamilyProperties(mPhysicalDevice, &queueFamilyPropertiesCount, queueFamilyProperties.data()); //--------------------------------------------------------------------------------- // 특정 queueFamilyProperties가 VK_QUEUE_GRAPHICS_BIT를 지원하는지 확인. // 지원하는 queueFamilyProperties를 찾으면 break. queueFamily에 대한 정보는 mQueueFamilyIndex에 저장. for (mQueueFamilyIndex = 0; mQueueFamilyIndex != queueFamilyPropertiesCount; ++mQueueFamilyIndex) { if (queueFamilyProperties[mQueueFamilyIndex].queueFlags & VK_QUEUE_GRAPHICS_BIT) { break; } } // 생성할 큐를 정의 const vector<float> queuePriorities{1.0}; VkDeviceQueueCreateInfo deviceQueueCreateInfo{ .sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO, .queueFamilyIndex = mQueueFamilyIndex, // queueFamilyIndex .queueCount = 1, // 생성할 큐의 개수 .pQueuePriorities = queuePriorities.data() // 큐의 우선순위 }; uint32_t deviceExtensionCount; // 사용 가능한 deviceExtension 개수 VK_CHECK_ERROR(vkEnumerateDeviceExtensionProperties(mPhysicalDevice, nullptr, &deviceExtensionCount, nullptr)); vector<VkExtensionProperties> deviceExtensionProperties(deviceExtensionCount); VK_CHECK_ERROR(vkEnumerateDeviceExtensionProperties(mPhysicalDevice, nullptr, &deviceExtensionCount, deviceExtensionProperties.data())); vector<const char *> deviceExtensionNames; for (const auto &properties: deviceExtensionProperties) { if (properties.extensionName == string("VK_KHR_swapchain")) { deviceExtensionNames.push_back(properties.extensionName); } } assert(deviceExtensionNames.size() == 1); // VK_KHR_swapchain이 반드시 필요하기 때문에 확인 // 생성할 Device 정의 VkDeviceCreateInfo deviceCreateInfo{ .sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO, .queueCreateInfoCount = 1, // 큐의 개수 .pQueueCreateInfos = &deviceQueueCreateInfo, // 생성할 큐의 정보 .enabledExtensionCount = static_cast<uint32_t>(deviceExtensionNames.size()), .ppEnabledExtensionNames = deviceExtensionNames.data() // 활성화하려는 deviceExtension들을 넘겨줌 }; // vkCreateDevice를 호출하여 Device 생성(= mDevice 생성) VK_CHECK_ERROR(vkCreateDevice(mPhysicalDevice, &deviceCreateInfo, nullptr, &mDevice)); // 생성된 Device(= mDevice)로부터 큐를 vkGetDeviceQueue를 호출하여 얻어온다. vkGetDeviceQueue(mDevice, mQueueFamilyIndex, 0, &mQueue); // ================================================================================ // 4. VkSurface 생성 // ================================================================================ VkAndroidSurfaceCreateInfoKHR surfaceCreateInfo{ .sType = VK_STRUCTURE_TYPE_ANDROID_SURFACE_CREATE_INFO_KHR, .window = window }; // surface 생성. VK_CHECK_ERROR(vkCreateAndroidSurfaceKHR(mInstance, &surfaceCreateInfo, nullptr, &mSurface)); VkBool32 supported; // surface 지원 여부 VK_CHECK_ERROR(vkGetPhysicalDeviceSurfaceSupportKHR(mPhysicalDevice, mQueueFamilyIndex, mSurface, &supported)); // 지원 여부를 받아옴. assert(supported); // ================================================================================ // 5. VkSwapchain 생성 // ================================================================================ VkSurfaceCapabilitiesKHR surfaceCapabilities; VK_CHECK_ERROR(vkGetPhysicalDeviceSurfaceCapabilitiesKHR(mPhysicalDevice, mSurface, &surfaceCapabilities)); VkCompositeAlphaFlagBitsKHR compositeAlpha = VK_COMPOSITE_ALPHA_FLAG_BITS_MAX_ENUM_KHR; for (auto i = 0; i <= 4; ++i) { if (auto flag = 0x1u << i; surfaceCapabilities.supportedCompositeAlpha & flag) { compositeAlpha = static_cast<VkCompositeAlphaFlagBitsKHR>(flag); break; } } assert(compositeAlpha != VK_COMPOSITE_ALPHA_FLAG_BITS_MAX_ENUM_KHR); VkImageUsageFlags swapchainImageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT; assert(surfaceCapabilities.supportedUsageFlags & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT); uint32_t surfaceFormatCount = 0; VK_CHECK_ERROR(vkGetPhysicalDeviceSurfaceFormatsKHR(mPhysicalDevice, mSurface, &surfaceFormatCount, nullptr)); vector<VkSurfaceFormatKHR> surfaceFormats(surfaceFormatCount); VK_CHECK_ERROR(vkGetPhysicalDeviceSurfaceFormatsKHR(mPhysicalDevice, mSurface, &surfaceFormatCount, surfaceFormats.data())); uint32_t surfaceFormatIndex = VK_FORMAT_MAX_ENUM; for (auto i = 0; i != surfaceFormatCount; ++i) { if (surfaceFormats[i].format == VK_FORMAT_R8G8B8A8_UNORM) { surfaceFormatIndex = i; break; } } assert(surfaceFormatIndex != VK_FORMAT_MAX_ENUM); uint32_t presentModeCount; VK_CHECK_ERROR(vkGetPhysicalDeviceSurfacePresentModesKHR(mPhysicalDevice, mSurface, &presentModeCount, nullptr)); vector<VkPresentModeKHR> presentModes(presentModeCount); VK_CHECK_ERROR(vkGetPhysicalDeviceSurfacePresentModesKHR(mPhysicalDevice, mSurface, &presentModeCount, presentModes.data())); uint32_t presentModeIndex = VK_PRESENT_MODE_MAX_ENUM_KHR; for (auto i = 0; i != presentModeCount; ++i) { if (presentModes[i] == VK_PRESENT_MODE_FIFO_KHR) { presentModeIndex = i; break; } } assert(presentModeIndex != VK_PRESENT_MODE_MAX_ENUM_KHR); VkSwapchainCreateInfoKHR swapchainCreateInfo{ .sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR, .surface = mSurface, .minImageCount = surfaceCapabilities.minImageCount, .imageFormat = surfaceFormats[surfaceFormatIndex].format, .imageColorSpace = surfaceFormats[surfaceFormatIndex].colorSpace, .imageExtent = surfaceCapabilities.currentExtent, .imageArrayLayers = 1, .imageUsage = swapchainImageUsage, .imageSharingMode = VK_SHARING_MODE_EXCLUSIVE, .preTransform = surfaceCapabilities.currentTransform, .compositeAlpha = compositeAlpha, .presentMode = presentModes[presentModeIndex] }; VK_CHECK_ERROR(vkCreateSwapchainKHR(mDevice, &swapchainCreateInfo, nullptr, &mSwapchain)); uint32_t swapchainImageCount; VK_CHECK_ERROR(vkGetSwapchainImagesKHR(mDevice, mSwapchain, &swapchainImageCount, nullptr)); mSwapchainImages.resize(swapchainImageCount); VK_CHECK_ERROR(vkGetSwapchainImagesKHR(mDevice, mSwapchain, &swapchainImageCount, mSwapchainImages.data())); mSwapchainImageViews.resize(swapchainImageCount); // ImageView를 Swapchain의 개수만큼 생성 for (auto i = 0; i != swapchainImageCount; ++i) { // ================================================================================ // 6. VkImageView 생성 // ================================================================================ VkImageViewCreateInfo imageViewCreateInfo{ // 생성할 ImageView를 정의 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, .image = mSwapchainImages[i], .viewType = VK_IMAGE_VIEW_TYPE_2D, .format = surfaceFormats[surfaceFormatIndex].format, // Swapchain 이미지 포맷과 동일한 포맷으로 설정 .components = { .r = VK_COMPONENT_SWIZZLE_R, .g = VK_COMPONENT_SWIZZLE_G, .b = VK_COMPONENT_SWIZZLE_B, .a = VK_COMPONENT_SWIZZLE_A, }, .subresourceRange = { // 모든 이미지에 대해서 이 이미지 뷰가 접근할 수 있도록 설정 .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .baseMipLevel = 0, .levelCount = 1, .baseArrayLayer = 0, .layerCount = 1 } }; VK_CHECK_ERROR(vkCreateImageView(mDevice, &imageViewCreateInfo, nullptr, &mSwapchainImageViews[i])); // mSwapchainImageViews[i] 생성 } // ================================================================================ // 7. VkCommandPool 생성 // ================================================================================ VkCommandPoolCreateInfo commandPoolCreateInfo{ .sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO, .flags = VK_COMMAND_POOL_CREATE_TRANSIENT_BIT | // command buffer가 자주 변경될 것임을 알려줌 VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT, // command buffer를 개별적으로 초기화 가능하게 설정 .queueFamilyIndex = mQueueFamilyIndex }; VK_CHECK_ERROR(vkCreateCommandPool(mDevice, &commandPoolCreateInfo, nullptr, &mCommandPool)); // mCommandPool 생성 // ================================================================================ // 8. VkCommandBuffer 할당 // ================================================================================ VkCommandBufferAllocateInfo commandBufferAllocateInfo{ // 할당하려는 command buffer 정의 .sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO, .commandPool = mCommandPool, .level = VK_COMMAND_BUFFER_LEVEL_PRIMARY, .commandBufferCount = 1 }; VK_CHECK_ERROR(vkAllocateCommandBuffers(mDevice, &commandBufferAllocateInfo, &mCommandBuffer)); // ================================================================================ // 9. VkFence 생성 // ================================================================================ VkFenceCreateInfo fenceCreateInfo{ .sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO }; // 생성할 Fence의 정보를 해당 구조체에서 정의 VK_CHECK_ERROR(vkCreateFence(mDevice, &fenceCreateInfo, nullptr, &mFence)); // mFence 생성. flag에 아무것도 넣어주지 않았기 때문에 생성된 Fence의 초기 상태는 Unsignal 상태다. // ================================================================================ // 10. VkSemaphore 생성 // ================================================================================ VkSemaphoreCreateInfo semaphoreCreateInfo{ .sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO, }; VK_CHECK_ERROR(vkCreateSemaphore(mDevice, &semaphoreCreateInfo, nullptr, &mSemaphore)); // ================================================================================ // 11. VkRenderPass 생성 // ================================================================================ VkAttachmentDescription attachmentDescription{ .format = surfaceFormats[surfaceFormatIndex].format, .samples = VK_SAMPLE_COUNT_1_BIT, .loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR, .storeOp = VK_ATTACHMENT_STORE_OP_STORE, .initialLayout = VK_IMAGE_LAYOUT_UNDEFINED, .finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR }; VkAttachmentReference attachmentReference{ .attachment = 0, .layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL }; VkSubpassDescription subpassDescription{ .pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS, .colorAttachmentCount = 1, .pColorAttachments = &attachmentReference }; VkRenderPassCreateInfo renderPassCreateInfo{ .sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO, .attachmentCount = 1, .pAttachments = &attachmentDescription, .subpassCount = 1, .pSubpasses = &subpassDescription }; VK_CHECK_ERROR(vkCreateRenderPass(mDevice, &renderPassCreateInfo, nullptr, &mRenderPass)); // mRenderPass 생성. mFramebuffers.resize(swapchainImageCount); for (auto i = 0; i != swapchainImageCount; ++i) { // ================================================================================ // 12. VkFramebuffer 생성 // ================================================================================ VkFramebufferCreateInfo framebufferCreateInfo{ .sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO, .renderPass = mRenderPass, .attachmentCount = 1, .pAttachments = &mSwapchainImageViews[i], // ImageView .width = mSwapchainImageExtent.width, .height = mSwapchainImageExtent.height, .layers = 1 }; VK_CHECK_ERROR(vkCreateFramebuffer(mDevice, &framebufferCreateInfo, nullptr, &mFramebuffers[i]));// mFramebuffers[i] 생성 } // ================================================================================ // 13. Vertex VkShaderModule 생성 // ================================================================================ string_view vertexShaderCode = { "#version 310 es \n" " \n" "void main() { \n" " vec2 pos[3] = vec2[3](vec2(-0.5, 0.5), \n" " vec2( 0.5, 0.5), \n" " vec2( 0.0, -0.5)); \n" " \n" " gl_Position = vec4(pos[gl_VertexIndex], 0.0, 1.0); \n" "} \n" }; std::vector<uint32_t> vertexShaderBinary; // VKSL을 SPIR-V로 변환. VK_CHECK_ERROR(vkCompileShader(vertexShaderCode, VK_SHADER_TYPE_VERTEX, &vertexShaderBinary)); VkShaderModuleCreateInfo vertexShaderModuleCreateInfo{ .sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO, .codeSize = vertexShaderBinary.size() * sizeof(uint32_t), // 바이트 단위. .pCode = vertexShaderBinary.data() }; VK_CHECK_ERROR(vkCreateShaderModule(mDevice, &vertexShaderModuleCreateInfo, nullptr, &mVertexShaderModule)); // mVertexShaderModule 생성. // ================================================================================ // 14. Fragment VkShaderModule 생성 // ================================================================================ string_view fragmentShaderCode = { "#version 310 es \n" "precision mediump float; \n" " \n" "layout(location = 0) out vec4 fragmentColor; \n" " \n" "void main() { \n" " fragmentColor = vec4(1.0, 0.0, 0.0, 1.0); \n" "} \n" }; std::vector<uint32_t> fragmentShaderBinary; VK_CHECK_ERROR(vkCompileShader(fragmentShaderCode, VK_SHADER_TYPE_FRAGMENT, &fragmentShaderBinary)); VkShaderModuleCreateInfo fragmentShaderModuleCreateInfo{ .sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO, .codeSize = fragmentShaderBinary.size() * sizeof(uint32_t), .pCode = fragmentShaderBinary.data() }; VK_CHECK_ERROR(vkCreateShaderModule(mDevice, &fragmentShaderModuleCreateInfo, nullptr, &mFragmentShaderModule)); } VkRenderer::~VkRenderer() { vkDestroyShaderModule(mDevice, mVertexShaderModule, nullptr); vkDestroyShaderModule(mDevice, mFragmentShaderModule, nullptr); for (auto framebuffer : mFramebuffers) { vkDestroyFramebuffer(mDevice, framebuffer, nullptr); } mFramebuffers.clear(); vkDestroyRenderPass(mDevice, mRenderPass, nullptr); for (auto imageView : mSwapchainImageViews) { vkDestroyImageView(mDevice, imageView, nullptr); } mSwapchainImageViews.clear(); vkDestroySemaphore(mDevice, mSemaphore, nullptr); vkDestroyFence(mDevice, mFence, nullptr); vkFreeCommandBuffers(mDevice, mCommandPool, 1, &mCommandBuffer); vkDestroyCommandPool(mDevice, mCommandPool, nullptr); vkDestroySwapchainKHR(mDevice, mSwapchain, nullptr); vkDestroySurfaceKHR(mInstance, mSurface, nullptr); vkDestroyDevice(mDevice, nullptr); // Device 파괴. queue의 경우 Device를 생성하면서 생겼기 때문에 따로 파괴하는 API가 존재하지 않는다. vkDestroyInstance(mInstance, nullptr); } void VkRenderer::render() { // ================================================================================ // 1. 화면에 출력할 수 있는 VkImage 얻기 // ================================================================================ uint32_t swapchainImageIndex; VK_CHECK_ERROR(vkAcquireNextImageKHR(mDevice, mSwapchain, UINT64_MAX, VK_NULL_HANDLE, mFence, // Fence 설정 &swapchainImageIndex)); // 사용 가능한 이미지 변수에 담기 //auto swapchainImage = mSwapchainImages[swapchainImageIndex]; // swapchainImage에 더 이상 직접 접근하지 않으므로 이제 사용X auto framebuffer = mFramebuffers[swapchainImageIndex]; // ================================================================================ // 2. VkFence 기다린 후 초기화 // ================================================================================ // mFence가 Signal 될 때까지 기다린다. VK_CHECK_ERROR(vkWaitForFences(mDevice, 1, &mFence, VK_TRUE, UINT64_MAX)); // mFence가 Siganl이 되면 vkResetFences를 호출해서 Fence의 상태를 다시 초기화한다. // 초기화하는 이유: vkAcquireNextImageKHR을 호출할 때 이 Fence의 상태는 항상 Unsignal 상태여야 하기 때문이다. VK_CHECK_ERROR(vkResetFences(mDevice, 1, &mFence)); // ================================================================================ // 3. VkCommandBuffer 초기화 // ================================================================================ vkResetCommandBuffer(mCommandBuffer, 0); // ================================================================================ // 4. VkCommandBuffer 기록 시작 // ================================================================================ VkCommandBufferBeginInfo commandBufferBeginInfo{ .sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO, .flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT // 한 번만 기록되고 다시 리셋 될 것이라는 의미 }; // mCommandBuffer를 기록중인 상태로 변경. VK_CHECK_ERROR(vkBeginCommandBuffer(mCommandBuffer, &commandBufferBeginInfo)); // ================================================================================ // 5. VkRenderPass 시작 // ================================================================================ VkRenderPassBeginInfo renderPassBeginInfo{ .sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO, .renderPass = mRenderPass, .framebuffer = framebuffer, .renderArea{ .extent = mSwapchainImageExtent }, .clearValueCount = 1, .pClearValues = &mClearValue }; vkCmdBeginRenderPass(mCommandBuffer, &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); // ================================================================================ // 6. VkRenderPass 종료 // ================================================================================ vkCmdEndRenderPass(mCommandBuffer); // ================================================================================ // 7. Clear 색상 갱신 // ================================================================================ for (auto i = 0; i != 4; ++i) { mClearValue.color.float32[i] = fmodf(mClearValue.color.float32[i] + 0.01, 1.0); } // ================================================================================ // 8. VkCommandBuffer 기록 종료 // ================================================================================ VK_CHECK_ERROR(vkEndCommandBuffer(mCommandBuffer)); // mCommandBuffer는 Executable 상태가 된다. // ================================================================================ // 9. VkCommandBuffer 제출 // ================================================================================ VkSubmitInfo submitInfo{ .sType = VK_STRUCTURE_TYPE_SUBMIT_INFO, .commandBufferCount = 1, .pCommandBuffers = &mCommandBuffer, .signalSemaphoreCount = 1, .pSignalSemaphores = &mSemaphore }; // submitInfo 구조체를 넘김으로써 commandBuffer 정보를 queue에 제출 VK_CHECK_ERROR(vkQueueSubmit(mQueue, 1, &submitInfo, VK_NULL_HANDLE)); // commandBuffer를 vkQueueSubmit에 제출했지만 해당 Command buffer가 실행이 됐을지 안 됐을지 알 수 없다. CPU와 GPU는 따로따로 돌기 때문에 항상 실행이 됐다는 보장을 할 수 없다. 그래서 이를 보장하기 위해 vkQueueWaitIdle를 호출하여 이 queue에 제출한 Command buffer가 모두 다 실행되는 것을 보장한다. VK_CHECK_ERROR(vkQueueWaitIdle(mQueue)); // ================================================================================ // 10. VkImage 화면에 출력 // ================================================================================ VkPresentInfoKHR presentInfo{ .sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR, .waitSemaphoreCount = 1, .pWaitSemaphores = &mSemaphore, .swapchainCount = 1, .pSwapchains = &mSwapchain, .pImageIndices = &swapchainImageIndex }; VK_CHECK_ERROR(vkQueuePresentKHR(mQueue, &presentInfo)); // 화면에 출력. VK_CHECK_ERROR(vkQueueWaitIdle(mQueue)); }
'⭐ Vulkan & CMake > Vulkan' 카테고리의 다른 글
[Vulkan] Vulkan Buffer (0) | 2024.09.12 |
---|---|
[Vulkan] Vulkan Graphics pipeline 벌컨 그래픽스 파이프라인 (0) | 2024.09.11 |
[Vulkan] VKSL 주의사항 (0) | 2024.09.10 |
[Vulkan] SPIR-V (0) | 2024.09.10 |
[Vulkan] Hello fast clear (0) | 2024.09.10 |
댓글
이 글 공유하기
다른 글
-
[Vulkan] Vulkan Buffer
[Vulkan] Vulkan Buffer
2024.09.12 -
[Vulkan] Vulkan Graphics pipeline 벌컨 그래픽스 파이프라인
[Vulkan] Vulkan Graphics pipeline 벌컨 그래픽스 파이프라인
2024.09.11 -
[Vulkan] VKSL 주의사항
[Vulkan] VKSL 주의사항
2024.09.10 -
[Vulkan] SPIR-V
[Vulkan] SPIR-V
2024.09.10
댓글을 사용할 수 없습니다.