다음 내용은 OpenGL에는 존재하지 않고 Vulkan에서도 다소 복잡한 개념이다.

 

 

목차

     

     


     

     


    인프런 삼각형님의 '삼각형의 실전! Vulkan 중급' 강의를 참고하였습니다. 

    😎 [삼각형의 실전! Vulkan 중급] 강의 들으러 가기!

     

     

     

    Vulkan Descriptor set layout


     

     

    삼각형이 움직이기 위해서는 필요한 것

     

    삼각형을 움직이기 위해서 유니폼이 필요하다.

    Vulkan에서는 유니폼 블록을 사용해서 유니폼을 정의해야 한다. 아래의 코드를 보면 OpenGL의 유니폼과 생김새가 다른 것을 알 수 있다.  set, binding 같은 새로운 키워드가 등장한다.

     

    "layout(set = 0, binding = 0) uniform Uniform { \n"
    " float position[2];							\n"
    "}; 											\n"
    "void main() { 									\n"
    " gl_Position = vec4(inPosition, 1.0); 			\n"
    " gl_Position.x += position[0]; 				\n"
    " gl_Position.y += position[1]; 				\n"
    "} 												\n"

    위의 예제 코드에서는 위치 정보를 저장하는데 데이터 타입으로 Vector2 대신 float 배열을 사용했다. (float position[2]). 이는 std140 메모리 레이아웃을 설명하기 위한 선택으로 실제 응용에서는 Vector2 사용이 더 효과적이다. 

     

     

    GPU는 여러 개의 하드웨어 모듈로 구성되어 있다. Graphics pipeline도 GPU를 구성하는 하나의 하드웨어 모듈인데 이 하드웨어가 유니폼 블록과 같은 리소스를 읽기 위해서는 인터페이스가 필요하다.

     

    C++ 함수에서 파라미터를 사용하기 위해서는 어떤 파라미터를 사용할 수 있는지 알아야합니다.

     

    int foo(int a, int b, int c) {
     return a + b + c;
    }

     

    Graphics pipeline리소스접근하기 위해서 사용할 리소스무엇인지 알고 있어야 합니다


     

     

    리소스 접근을 위한 인터페이스

     

    Graphics pipeline 리소스 접근하기 위해 필요한 인터페이스

    이 인터페이스는 Graphics pipeline에 어떤 리소스를 사용할 수 있는지를 정의한다.

     

     

    예를 들어, 유니폼 블록에서 setBinding이 모두 0으로 설정되었다면, 이는 해당 유니폼 블록에 필요한 리소스가 Desciptor set layout 0 위치에 설정되어 있다는 것을 의미한다. 반면 set이 1이고 Binding이 0인 경우에는 Desciptor set layout 1 위치에 리소스가 설정되어 있어야 한다.

     

    이러한 Descriptr set layout들은 함께 묶여야 Pipeline layout을 형성한다. 이 Pipeline layout이 Graphics pipeline이 리소스를 읽기 위한 인터페이스다.


     

     

    VkDescriptorSetLayoutCreateInfo 구조체

     

    typedef struct VkDescriptorSetLayoutCreateInfo {
         VkStructureType sType;
         const void* pNext;
         VkDescriptorSetLayoutCreateFlags flags;
         uint32_t bindingCount;
         const VkDescriptorSetLayoutBinding* pBindings;
    } VkDescriptorSetLayoutCreateInfo;

     

    멤버 변수 설명 
     sType   구조체의 타입
     pNext   NULL 또는 확장 기능 구조체의 포인터
     flags   일단 0을 사용
     bindingCount   VkDescriptorSetLayoutBinding의 개수
     pBindings   VkDescriptorSetLayoutBinding 배열의 포인터

     

     


     

     

    VkDescriptorSetLayoutBinding 구조체

     

    typedef struct VkDescriptorSetLayoutBinding {
         uint32_t binding;
         VkDescriptorType descriptorType;
         uint32_t descriptorCount;
         VkShaderStageFlags stageFlags;
         const VkSampler* pImmutableSamplers;
    } VkDescriptorSetLayoutBinding;

     

    멤버 변수 설명 
     binding   바인딩 인덱스
     descriptorType   VkDescriptorType
     descriptorCount   일단 1을 사용
     stageFlags   VkShaderStageFlagBits의 조합
     pImmutableSamplers   일단 NULL을 사용

     


     

     

    VkDescriptorType 열거형

     

    바인딩을 정의할 때도 바인딩의 타입을 명시해야 된다.

     

    typedef enum VkDescriptorType {
         VK_DESCRIPTOR_TYPE_SAMPLER = 0,
         VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER = 1,
         VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE = 2,
         VK_DESCRIPTOR_TYPE_STORAGE_IMAGE = 3,
         VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER = 4,
         VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER = 5,
         VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER = 6,
         VK_DESCRIPTOR_TYPE_STORAGE_BUFFER = 7,
         VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC = 8,
         VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC = 9,
         VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT = 10,
         VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT = 1000138000,
         VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_NV = 1000165000,
         VK_DESCRIPTOR_TYPE_MAX_ENUM = 0x7FFFFFFF
    } VkDescriptorType;

     

     

    바인딩을 0으로 설정하고, Descriptor type을 유니폼 버퍼로 정의하고, 현재 이 유니폼 버퍼는 Vertex Shader에서만 접근하도록 설정되어 있다. 

     

    만약 이 유니폼 블록이 Fragment Shader에서도 접근이 필요하다면 VK _SHADER_STAGE_FRAGMENT_BIT을 추가해야 한다.

     

    이렇게 어떤 Shader stage에서 리소스에접근할 수 있는지를 명확히 정의함으로써 Graphics pipeline의 성능을 최대로 이끌어낼 수 있다.


     

     

    VkDescriptorSetLayoutCreateInfo 구조체

     

     

    앞서 정의한 바인딩에 대한 정보(= &descriptorSetLayoutBinding)만 정의해주면 된다.


     

     

    Vulkan Descriptor set layout 생성

     

    VkResult vkCreateDescriptorSetLayout(
         VkDevice device,
         const VkDescriptorSetLayoutCreateInfo* pCreateInfo,
         const VkAllocationCallbacks* pAllocator,
         VkDescriptorSetLayout* pSetLayout);

     

    파라미터 설명 
     device   VkDevice
     pCreateInfo   VkDescriptorSetLayoutCreateInfo 변수의 포인터
     pAllocator   일단 NULL을 사용
     pSetLayout   VkDescriptorSetLayout 변수의 포인터

     

    mDescriptorSetLayout 생성


     

     

    Vulkan Descriptor set layout 파괴

     

    void vkDestroyDescriptorSetLayout(
         VkDevice device,
         VkDescriptorSetLayout descriptorSetLayout,
         const VkAllocationCallbacks* pAllocator);

     

    파라미터 설명 
     device   VkDevice
     descriptorSetLayout   VkDescriptorSetLayout
     pAllocator   일단 NULL을 사용

     


     

     

    코드

     

    #include ...
    using namespace std;
    
    VkRenderer::VkRenderer(ANativeWindow *window) {
        // 1. VkInstance 생성
        // 2. VkPhysicalDevice 선택
        // 3. VkPhysicalDeviceMemoryProperties 얻기
        // 4. VkDevice 생성
        // 5. VkSurface 생성
        // 6. VkSwapchain 생성
        
        mSwapchainImageViews.resize(swapchainImageCount); // ImageView를 Swapchain의 개수만큼 생성
        for (auto i = 0; i != swapchainImageCount; ++i) {
            // 7. VkImageView 생성 
        }
        // 8. VkCommandPool 생성
        // 9. VkCommandBuffer 할당
        // 10. VkFence 생성
        // 11. VkSemaphore 생성
        // 12. VkRenderPass 생성
        
        mFramebuffers.resize(swapchainImageCount);
        for (auto i = 0; i != swapchainImageCount; ++i) {
            // 13. VkFramebuffer 생성
        }
       
        // 14. Vertex VkShaderModule 생성
        // 15. Fragment VkShaderModule 생성
        
        // ================================================================================
        // 16. VkDescriptorSetLayout 생성
        // ================================================================================
        VkDescriptorSetLayoutBinding descriptorSetLayoutBinding{
            .binding = 0,
            .descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
            .descriptorCount = 1,
            .stageFlags = VK_SHADER_STAGE_VERTEX_BIT
        };
    
        VkDescriptorSetLayoutCreateInfo descriptorSetLayoutCreateInfo{
            .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
            .bindingCount = 1,
            .pBindings = &descriptorSetLayoutBinding
        };
    
        VK_CHECK_ERROR(vkCreateDescriptorSetLayout(mDevice,
                                                   &descriptorSetLayoutCreateInfo,
                                                   nullptr,
                                                   &mDescriptorSetLayout));
        
        // 17. VkPipelineLayout 생성
        // 18. Graphics VkPipeline 생성
        // 19. Vertex VkBuffer 생성
        // 20. Vertex VkBuffer의 VkMemoryRequirements 얻기
        // 21. Vertex VkDeviceMemory를 할당 할 수 있는 메모리 타입 인덱스 얻기
        // 22. Vertex VkDeviceMemory 할당
        // 23. Vertex VkBuffer와 Vertex VkDeviceMemory 바인드
        // 24. Vertex 데이터 복사
    }
    
    VkRenderer::~VkRenderer() { 
    	...
    	vkDestroyDescriptorSetLayout(mDevice, mDescriptorSetLayout, nullptr);
        ...
    }
    
    void VkRenderer::render() {
        // 1. 화면에 출력할 수 있는 VkImage 얻기
        // 2. VkFence 기다린 후 초기화
        // 3. VkCommandBuffer 초기화
        // 4. VkCommandBuffer 기록 시작
        // 5. VkRenderPass 시작
        // 6. Graphics VkPipeline 바인드
        
        // ================================================================================
        // 7. Vertex VkBuffer 바인드
        // ================================================================================
        VkDeviceSize vertexBufferOffset{0};
        vkCmdBindVertexBuffers(mCommandBuffer, 0, 1, &mVertexBuffer, &vertexBufferOffset);
        
        // 8. 삼각형 그리기
        // 9. VkRenderPass 종료
        // -------------9. Clear 색상 갱신--------------삭제됨.
        // 10. VkCommandBuffer 기록 종료
        // 11. VkCommandBuffer 제출
        // 12. VkImage 화면에 출력
    }

     



    전체코드

    더보기
    // MIT License
    //
    // Copyright (c) 2024 Daemyung Jang
    //
    // Permission is hereby granted, free of charge, to any person obtaining a copy
    // of this software and associated documentation files (the "Software"), to deal
    // in the Software without restriction, including without limitation the rights
    // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
    // copies of the Software, and to permit persons to whom the Software is
    // furnished to do so, subject to the following conditions:
    //
    // The above copyright notice and this permission notice shall be included in all
    // copies or substantial portions of the Software.
    //
    // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
    // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
    // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
    // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
    // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
    // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
    // SOFTWARE.
    
    #include <cassert>
    #include <cstddef>
    #include <array>
    #include <vector>
    #include <iomanip>
    
    #include "VkRenderer.h"
    #include "VkUtil.h"
    #include "AndroidOut.h"
    
    using namespace std;
    
    struct Vector3 {
        union {
            float x;
            float r;
        };
    
        union {
            float y;
            float g;
        };
    
        union {
            float z;
            float b;
        };
    };
    
    struct Vertex {
        Vector3 position;
        Vector3 color;
    };
    
    VkRenderer::VkRenderer(ANativeWindow *window) {
        // ================================================================================
        // 1. VkInstance 생성
        // ================================================================================
        // VkApplicationInfo 구조체 정의
        VkApplicationInfo applicationInfo{
            .sType = VK_STRUCTURE_TYPE_APPLICATION_INFO,
            .pApplicationName = "Practice Vulkan",
            .applicationVersion = VK_MAKE_API_VERSION(0, 0, 1, 0),
            .apiVersion = VK_MAKE_API_VERSION(0, 1, 3, 0)
        };
    
        // 사용할 수 있는 레이어를 얻어온다.
        uint32_t instanceLayerCount;
        VK_CHECK_ERROR(vkEnumerateInstanceLayerProperties(&instanceLayerCount, nullptr));
    
        vector<VkLayerProperties> instanceLayerProperties(instanceLayerCount);
        VK_CHECK_ERROR(vkEnumerateInstanceLayerProperties(&instanceLayerCount,
                                                          instanceLayerProperties.data()));
    
        // 활성화할 레이어의 이름을 배열로 만든다.
        vector<const char*> instanceLayerNames;
        for (const auto &layerProperty : instanceLayerProperties) {
            instanceLayerNames.push_back(layerProperty.layerName);
        }
    
        uint32_t instanceExtensionCount; // 사용 가능한 InstanceExtension 개수
        VK_CHECK_ERROR(vkEnumerateInstanceExtensionProperties(nullptr,
                                                              &instanceExtensionCount,
                                                              nullptr));
    
        vector<VkExtensionProperties> instanceExtensionProperties(instanceExtensionCount);
        VK_CHECK_ERROR(vkEnumerateInstanceExtensionProperties(nullptr,
                                                              &instanceExtensionCount,
                                                              instanceExtensionProperties.data()));
    
        vector<const char *> instanceExtensionNames; // instanceExtensionName을 담는 배열
        for (const auto &properties: instanceExtensionProperties) {
            if (properties.extensionName == string("VK_KHR_surface") ||
                properties.extensionName == string("VK_KHR_android_surface")) {
                instanceExtensionNames.push_back(properties.extensionName);
            }
        }
        assert(instanceExtensionNames.size() == 2); // 반드시 2개의 이름이 필요하기 때문에 확인
    
        // sType: 구조체의 타입, pApplicationInfo: 어플리케이션의 이름
        // enabledLayerCount, ppEnableLayerNames: 사용할 레이어의 정보를 정의
        VkInstanceCreateInfo instanceCreateInfo{
            .sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO,
            .pApplicationInfo = &applicationInfo,
            .enabledLayerCount = static_cast<uint32_t>(instanceLayerNames.size()),
            .ppEnabledLayerNames = instanceLayerNames.data(),
            .enabledExtensionCount = static_cast<uint32_t>(instanceExtensionNames.size()),
            .ppEnabledExtensionNames = instanceExtensionNames.data()
        };
    
        // vkCreateInstance로 인스턴스 생성. 생성된 인스턴스가 mInstance에 쓰여진다.
        VK_CHECK_ERROR(vkCreateInstance(&instanceCreateInfo, nullptr, &mInstance));
    
    
        // ================================================================================
        // 2. VkPhysicalDevice 선택
        // ================================================================================
        uint32_t physicalDeviceCount;
        VK_CHECK_ERROR(vkEnumeratePhysicalDevices(mInstance, &physicalDeviceCount, nullptr));
    
        vector<VkPhysicalDevice> physicalDevices(physicalDeviceCount);
        VK_CHECK_ERROR(vkEnumeratePhysicalDevices(mInstance, &physicalDeviceCount, physicalDevices.data()));
    
        // 간단한 예제를 위해 첫 번째 VkPhysicalDevice를 사용
        mPhysicalDevice = physicalDevices[0];
    
        VkPhysicalDeviceProperties physicalDeviceProperties; // 이 구조체 안에 GPU에 필요한 모든 정보가 있다.
        vkGetPhysicalDeviceProperties(mPhysicalDevice, &physicalDeviceProperties);
    
        aout << "Selected Physical Device Information ↓" << endl;
        aout << setw(16) << left << " - Device Name: "
             << string_view(physicalDeviceProperties.deviceName) << endl;
        aout << setw(16) << left << " - Device Type: "
             << vkToString(physicalDeviceProperties.deviceType) << endl;
        aout << std::hex;
        aout << setw(16) << left << " - Device ID: " << physicalDeviceProperties.deviceID << endl;
        aout << setw(16) << left << " - Vendor ID: " << physicalDeviceProperties.vendorID << endl;
        aout << std::dec;
        aout << setw(16) << left << " - API Version: "
             << VK_API_VERSION_MAJOR(physicalDeviceProperties.apiVersion) << "."
             << VK_API_VERSION_MINOR(physicalDeviceProperties.apiVersion);
        aout << setw(16) << left << " - Driver Version: "
             << VK_API_VERSION_MAJOR(physicalDeviceProperties.driverVersion) << "."
             << VK_API_VERSION_MINOR(physicalDeviceProperties.driverVersion);
    
        // ================================================================================
        // 3. VkPhysicalDeviceMemoryProperties 얻기
        // ================================================================================
        vkGetPhysicalDeviceMemoryProperties(mPhysicalDevice, &mPhysicalDeviceMemoryProperties);
    
        // ================================================================================
        // 4. VkDevice 생성
        // ================================================================================
        uint32_t queueFamilyPropertiesCount;
    
        //---------------------------------------------------------------------------------
        //** queueFamily 속성을 조회
        // 사용 가능한 queueFamily의 수(=queueFamilyPropertiesCount)를 얻어온다.
        vkGetPhysicalDeviceQueueFamilyProperties(mPhysicalDevice, &queueFamilyPropertiesCount, nullptr);
    
        vector<VkQueueFamilyProperties> queueFamilyProperties(queueFamilyPropertiesCount);
        // 해당 queueFamily들의 속성을 배열에 얻어온다.
        vkGetPhysicalDeviceQueueFamilyProperties(mPhysicalDevice, &queueFamilyPropertiesCount, queueFamilyProperties.data());
        //---------------------------------------------------------------------------------
    
        // 특정 queueFamilyProperties가 VK_QUEUE_GRAPHICS_BIT를 지원하는지 확인.
        // 지원하는 queueFamilyProperties를 찾으면 break. queueFamily에 대한 정보는 mQueueFamilyIndex에 저장.
        for (mQueueFamilyIndex = 0;
             mQueueFamilyIndex != queueFamilyPropertiesCount; ++mQueueFamilyIndex) {
            if (queueFamilyProperties[mQueueFamilyIndex].queueFlags & VK_QUEUE_GRAPHICS_BIT) {
                break;
            }
        }
    
        // 생성할 큐를 정의
        const vector<float> queuePriorities{1.0};
        VkDeviceQueueCreateInfo deviceQueueCreateInfo{
                .sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO,
                .queueFamilyIndex = mQueueFamilyIndex,      // queueFamilyIndex
                .queueCount = 1,                            // 생성할 큐의 개수
                .pQueuePriorities = queuePriorities.data()  // 큐의 우선순위
        };
    
        uint32_t deviceExtensionCount; // 사용 가능한 deviceExtension 개수
        VK_CHECK_ERROR(vkEnumerateDeviceExtensionProperties(mPhysicalDevice,
                                                            nullptr,
                                                            &deviceExtensionCount,
                                                            nullptr));
    
        vector<VkExtensionProperties> deviceExtensionProperties(deviceExtensionCount);
        VK_CHECK_ERROR(vkEnumerateDeviceExtensionProperties(mPhysicalDevice,
                                                            nullptr,
                                                            &deviceExtensionCount,
                                                            deviceExtensionProperties.data()));
    
        vector<const char *> deviceExtensionNames;
        for (const auto &properties: deviceExtensionProperties) {
            if (properties.extensionName == string("VK_KHR_swapchain")) {
                deviceExtensionNames.push_back(properties.extensionName);
            }
        }
        assert(deviceExtensionNames.size() == 1); // VK_KHR_swapchain이 반드시 필요하기 때문에 확인
    
        // 생성할 Device 정의
        VkDeviceCreateInfo deviceCreateInfo{
                .sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO,
                .queueCreateInfoCount = 1,                   // 큐의 개수
                .pQueueCreateInfos = &deviceQueueCreateInfo, // 생성할 큐의 정보
                .enabledExtensionCount = static_cast<uint32_t>(deviceExtensionNames.size()),
                .ppEnabledExtensionNames = deviceExtensionNames.data() // 활성화하려는 deviceExtension들을 넘겨줌
        };
    
        // vkCreateDevice를 호출하여 Device 생성(= mDevice 생성)
        VK_CHECK_ERROR(vkCreateDevice(mPhysicalDevice, &deviceCreateInfo, nullptr, &mDevice));
        // 생성된 Device(= mDevice)로부터 큐를 vkGetDeviceQueue를 호출하여 얻어온다.
        vkGetDeviceQueue(mDevice, mQueueFamilyIndex, 0, &mQueue);
    
    
        // ================================================================================
        // 5. VkSurface 생성
        // ================================================================================
        VkAndroidSurfaceCreateInfoKHR surfaceCreateInfo{
                .sType = VK_STRUCTURE_TYPE_ANDROID_SURFACE_CREATE_INFO_KHR,
                .window = window
        };
    
        // surface 생성.
        VK_CHECK_ERROR(vkCreateAndroidSurfaceKHR(mInstance, &surfaceCreateInfo, nullptr, &mSurface));
    
        VkBool32 supported; // surface 지원 여부
        VK_CHECK_ERROR(vkGetPhysicalDeviceSurfaceSupportKHR(mPhysicalDevice,
                                                            mQueueFamilyIndex,
                                                            mSurface,
                                                            &supported)); // 지원 여부를 받아옴.
        assert(supported);
    
    
        // ================================================================================
        // 6. VkSwapchain 생성
        // ================================================================================
        VkSurfaceCapabilitiesKHR surfaceCapabilities;
        VK_CHECK_ERROR(vkGetPhysicalDeviceSurfaceCapabilitiesKHR(mPhysicalDevice,
                                                                 mSurface,
                                                                 &surfaceCapabilities));
    
        VkCompositeAlphaFlagBitsKHR compositeAlpha = VK_COMPOSITE_ALPHA_FLAG_BITS_MAX_ENUM_KHR;
        for (auto i = 0; i <= 4; ++i) {
            if (auto flag = 0x1u << i; surfaceCapabilities.supportedCompositeAlpha & flag) {
                compositeAlpha = static_cast<VkCompositeAlphaFlagBitsKHR>(flag);
                break;
            }
        }
        assert(compositeAlpha != VK_COMPOSITE_ALPHA_FLAG_BITS_MAX_ENUM_KHR);
    
        VkImageUsageFlags swapchainImageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT;
        assert(surfaceCapabilities.supportedUsageFlags & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT);
    
        uint32_t surfaceFormatCount = 0;
        VK_CHECK_ERROR(vkGetPhysicalDeviceSurfaceFormatsKHR(mPhysicalDevice,
                                                            mSurface,
                                                            &surfaceFormatCount,
                                                            nullptr));
    
        vector<VkSurfaceFormatKHR> surfaceFormats(surfaceFormatCount);
        VK_CHECK_ERROR(vkGetPhysicalDeviceSurfaceFormatsKHR(mPhysicalDevice,
                                                            mSurface,
                                                            &surfaceFormatCount,
                                                            surfaceFormats.data()));
    
        uint32_t surfaceFormatIndex = VK_FORMAT_MAX_ENUM;
        for (auto i = 0; i != surfaceFormatCount; ++i) {
            if (surfaceFormats[i].format == VK_FORMAT_R8G8B8A8_UNORM) {
                surfaceFormatIndex = i;
                break;
            }
        }
        assert(surfaceFormatIndex != VK_FORMAT_MAX_ENUM);
    
        uint32_t presentModeCount;
        VK_CHECK_ERROR(vkGetPhysicalDeviceSurfacePresentModesKHR(mPhysicalDevice,
                                                                 mSurface,
                                                                 &presentModeCount,
                                                                 nullptr));
    
        vector<VkPresentModeKHR> presentModes(presentModeCount);
        VK_CHECK_ERROR(vkGetPhysicalDeviceSurfacePresentModesKHR(mPhysicalDevice,
                                                                 mSurface,
                                                                 &presentModeCount,
                                                                 presentModes.data()));
    
        uint32_t presentModeIndex = VK_PRESENT_MODE_MAX_ENUM_KHR;
        for (auto i = 0; i != presentModeCount; ++i) {
            if (presentModes[i] == VK_PRESENT_MODE_FIFO_KHR) {
                presentModeIndex = i;
                break;
            }
        }
        assert(presentModeIndex != VK_PRESENT_MODE_MAX_ENUM_KHR);
    
        VkSwapchainCreateInfoKHR swapchainCreateInfo{
                .sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR,
                .surface = mSurface,
                .minImageCount = surfaceCapabilities.minImageCount,
                .imageFormat = surfaceFormats[surfaceFormatIndex].format,
                .imageColorSpace = surfaceFormats[surfaceFormatIndex].colorSpace,
                .imageExtent = mSwapchainImageExtent,
                .imageArrayLayers = 1,
                .imageUsage = swapchainImageUsage,
                .imageSharingMode = VK_SHARING_MODE_EXCLUSIVE,
                .preTransform = surfaceCapabilities.currentTransform,
                .compositeAlpha = compositeAlpha,
                .presentMode = presentModes[presentModeIndex]
        };
    
        VK_CHECK_ERROR(vkCreateSwapchainKHR(mDevice, &swapchainCreateInfo, nullptr, &mSwapchain));
    
        uint32_t swapchainImageCount;
        VK_CHECK_ERROR(vkGetSwapchainImagesKHR(mDevice, mSwapchain, &swapchainImageCount, nullptr));
    
        mSwapchainImages.resize(swapchainImageCount);
        VK_CHECK_ERROR(vkGetSwapchainImagesKHR(mDevice,
                                               mSwapchain,
                                               &swapchainImageCount,
                                               mSwapchainImages.data()));
    
    
        mSwapchainImageViews.resize(swapchainImageCount); // ImageView를 Swapchain의 개수만큼 생성
        for (auto i = 0; i != swapchainImageCount; ++i) {
            // ================================================================================
            // 7. VkImageView 생성
            // ================================================================================
            VkImageViewCreateInfo imageViewCreateInfo{ // 생성할 ImageView를 정의
                    .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
                    .image = mSwapchainImages[i],
                    .viewType = VK_IMAGE_VIEW_TYPE_2D,
                    .format = surfaceFormats[surfaceFormatIndex].format, // Swapchain 이미지 포맷과 동일한 포맷으로 설정
                    .components = {
                            .r = VK_COMPONENT_SWIZZLE_R,
                            .g = VK_COMPONENT_SWIZZLE_G,
                            .b = VK_COMPONENT_SWIZZLE_B,
                            .a = VK_COMPONENT_SWIZZLE_A,
                    },
                    .subresourceRange = { // 모든 이미지에 대해서 이 이미지 뷰가 접근할 수 있도록 설정
                            .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
                            .baseMipLevel = 0,
                            .levelCount = 1,
                            .baseArrayLayer = 0,
                            .layerCount = 1
                    }
            };
    
            VK_CHECK_ERROR(vkCreateImageView(mDevice,
                                             &imageViewCreateInfo,
                                             nullptr,
                                             &mSwapchainImageViews[i])); // mSwapchainImageViews[i] 생성
        }
    
        // ================================================================================
        // 8. VkCommandPool 생성
        // ================================================================================
        VkCommandPoolCreateInfo commandPoolCreateInfo{
                .sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO,
                .flags = VK_COMMAND_POOL_CREATE_TRANSIENT_BIT |           // command buffer가 자주 변경될 것임을 알려줌
                         VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT, // command buffer를 개별적으로 초기화 가능하게 설정
                .queueFamilyIndex = mQueueFamilyIndex
        };
    
        VK_CHECK_ERROR(vkCreateCommandPool(mDevice, &commandPoolCreateInfo, nullptr, &mCommandPool)); // mCommandPool 생성
    
        // ================================================================================
        // 9. VkCommandBuffer 할당
        // ================================================================================
        VkCommandBufferAllocateInfo commandBufferAllocateInfo{ // 할당하려는 command buffer 정의
                .sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO,
                .commandPool = mCommandPool,
                .level = VK_COMMAND_BUFFER_LEVEL_PRIMARY,
                .commandBufferCount = 1
        };
    
        VK_CHECK_ERROR(vkAllocateCommandBuffers(mDevice, &commandBufferAllocateInfo, &mCommandBuffer));
    
    
        // ================================================================================
        // 10. VkFence 생성
        // ================================================================================
        VkFenceCreateInfo fenceCreateInfo{
            .sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO
        }; // 생성할 Fence의 정보를 해당 구조체에서 정의
    
        VK_CHECK_ERROR(vkCreateFence(mDevice, &fenceCreateInfo, nullptr, &mFence)); // mFence 생성. flag에 아무것도 넣어주지 않았기 때문에 생성된 Fence의 초기 상태는 Unsignal 상태다.
    
    
        // ================================================================================
        // 11. VkSemaphore 생성
        // ================================================================================
        VkSemaphoreCreateInfo semaphoreCreateInfo{
                .sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO,
        };
    
        VK_CHECK_ERROR(vkCreateSemaphore(mDevice, &semaphoreCreateInfo, nullptr, &mSemaphore));
    
    
        // ================================================================================
        // 12. VkRenderPass 생성
        // ================================================================================
        VkAttachmentDescription attachmentDescription{
                .format = surfaceFormats[surfaceFormatIndex].format,
                .samples = VK_SAMPLE_COUNT_1_BIT,
                .loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR,
                .storeOp = VK_ATTACHMENT_STORE_OP_STORE,
                .initialLayout = VK_IMAGE_LAYOUT_UNDEFINED,
                .finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR
        };
    
        VkAttachmentReference attachmentReference{
                .attachment = 0,
                .layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL
        };
    
        VkSubpassDescription subpassDescription{
                .pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS,
                .colorAttachmentCount = 1,
                .pColorAttachments = &attachmentReference
        };
    
        VkRenderPassCreateInfo renderPassCreateInfo{
                .sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,
                .attachmentCount = 1,
                .pAttachments = &attachmentDescription,
                .subpassCount = 1,
                .pSubpasses = &subpassDescription
        };
    
        VK_CHECK_ERROR(vkCreateRenderPass(mDevice, &renderPassCreateInfo, nullptr, &mRenderPass)); // mRenderPass 생성.
    
        mFramebuffers.resize(swapchainImageCount);
        for (auto i = 0; i != swapchainImageCount; ++i) {
            // ================================================================================
            // 13. VkFramebuffer 생성
            // ================================================================================
            VkFramebufferCreateInfo framebufferCreateInfo{
                    .sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,
                    .renderPass = mRenderPass,
                    .attachmentCount = 1,
                    .pAttachments = &mSwapchainImageViews[i], // ImageView
                    .width = mSwapchainImageExtent.width,
                    .height = mSwapchainImageExtent.height,
                    .layers = 1
            };
    
            VK_CHECK_ERROR(vkCreateFramebuffer(mDevice, &framebufferCreateInfo, nullptr, &mFramebuffers[i]));// mFramebuffers[i] 생성
        }
    
    
        // ================================================================================
        // 14. Vertex VkShaderModule 생성
        // ================================================================================
        string_view vertexShaderCode = {
                "#version 310 es                                        \n"
                "                                                       \n"
                "layout(location = 0) in vec3 inPosition;               \n"
                "layout(location = 1) in vec3 inColor;                  \n"
                "                                                       \n"
                "layout(location = 0) out vec3 outColor;                \n"
                "                                                       \n"
                "void main() {                                          \n"
                "    gl_Position = vec4(inPosition, 1.0);               \n"
                "    outColor = inColor;                                \n"
                "}                                                      \n"
        };
    
        std::vector<uint32_t> vertexShaderBinary;
        // VKSL을 SPIR-V로 변환.
        VK_CHECK_ERROR(vkCompileShader(vertexShaderCode,
                                       VK_SHADER_TYPE_VERTEX,
                                       &vertexShaderBinary));
    
        VkShaderModuleCreateInfo vertexShaderModuleCreateInfo{
                .sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO,
                .codeSize = vertexShaderBinary.size() * sizeof(uint32_t), // 바이트 단위.
                .pCode = vertexShaderBinary.data()
        };
    
        VK_CHECK_ERROR(vkCreateShaderModule(mDevice,
                                            &vertexShaderModuleCreateInfo,
                                            nullptr,
                                            &mVertexShaderModule)); // mVertexShaderModule 생성.
    
        // ================================================================================
        // 15. Fragment VkShaderModule 생성
        // ================================================================================
        string_view fragmentShaderCode = {
                "#version 310 es                                        \n"
                "precision mediump float;                               \n"
                "                                                       \n"
                "layout(location = 0) in vec3 inColor;                  \n"
                "                                                       \n"
                "layout(location = 0) out vec4 outColor;                \n"
                "                                                       \n"
                "void main() {                                          \n"
                "    outColor = vec4(inColor, 1.0);                     \n"
                "}                                                      \n"
        };
    
        std::vector<uint32_t> fragmentShaderBinary;
        VK_CHECK_ERROR(vkCompileShader(fragmentShaderCode,
                                       VK_SHADER_TYPE_FRAGMENT,
                                       &fragmentShaderBinary));
    
        VkShaderModuleCreateInfo fragmentShaderModuleCreateInfo{
                .sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO,
                .codeSize = fragmentShaderBinary.size() * sizeof(uint32_t),
                .pCode = fragmentShaderBinary.data()
        };
    
        VK_CHECK_ERROR(vkCreateShaderModule(mDevice,
                                            &fragmentShaderModuleCreateInfo,
                                            nullptr,
                                            &mFragmentShaderModule));
    
        // ================================================================================
        // 16. VkDescriptorSetLayout 생성
        // ================================================================================
        VkDescriptorSetLayoutBinding descriptorSetLayoutBinding{
                .binding = 0,
                .descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
                .descriptorCount = 1,
                .stageFlags = VK_SHADER_STAGE_VERTEX_BIT
        };
    
        VkDescriptorSetLayoutCreateInfo descriptorSetLayoutCreateInfo{
                .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
                .bindingCount = 1,
                .pBindings = &descriptorSetLayoutBinding
        };
    
        VK_CHECK_ERROR(vkCreateDescriptorSetLayout(mDevice,
                                                   &descriptorSetLayoutCreateInfo,
                                                   nullptr,
                                                   &mDescriptorSetLayout)); // mDescriptorSetLayout 생성
    
        // ================================================================================
        // 17. VkPipelineLayout 생성
        // ================================================================================
        VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo{
                .sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO
        };
    
        VK_CHECK_ERROR(vkCreatePipelineLayout(mDevice,
                                              &pipelineLayoutCreateInfo,
                                              nullptr,
                                              &mPipelineLayout));
    
        // ================================================================================
        // 18. Graphics VkPipeline 생성
        // ================================================================================
        array<VkPipelineShaderStageCreateInfo, 2> pipelineShaderStageCreateInfos{
                VkPipelineShaderStageCreateInfo{
                        .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
                        .stage = VK_SHADER_STAGE_VERTEX_BIT,
                        .module = mVertexShaderModule,
                        .pName = "main"
                },
                VkPipelineShaderStageCreateInfo{
                        .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
                        .stage = VK_SHADER_STAGE_FRAGMENT_BIT,
                        .module = mFragmentShaderModule,
                        .pName = "main"
                }
        };
    
        VkVertexInputBindingDescription vertexInputBindingDescription{
                .binding = 0,
                .stride = sizeof(Vertex),
                .inputRate = VK_VERTEX_INPUT_RATE_VERTEX
        };
    
        array<VkVertexInputAttributeDescription, 2> vertexInputAttributeDescriptions{
                VkVertexInputAttributeDescription{
                        .location = 0,
                        .binding = 0,
                        .format = VK_FORMAT_R32G32B32_SFLOAT,
                        .offset = offsetof(Vertex, position)
                },
                VkVertexInputAttributeDescription{
                        .location = 1,
                        .binding = 0,
                        .format = VK_FORMAT_R32G32B32_SFLOAT,
                        .offset = offsetof(Vertex, color)
                }
        };
    
        VkPipelineVertexInputStateCreateInfo pipelineVertexInputStateCreateInfo{
                .sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO,
                .vertexBindingDescriptionCount = 1,
                .pVertexBindingDescriptions = &vertexInputBindingDescription,
                .vertexAttributeDescriptionCount = static_cast<uint32_t>(vertexInputAttributeDescriptions.size()),
                .pVertexAttributeDescriptions = vertexInputAttributeDescriptions.data()
        };
    
        VkPipelineInputAssemblyStateCreateInfo pipelineInputAssemblyStateCreateInfo{
                .sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO,
                .topology =VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST
        };
    
        VkViewport viewport{
                .width = static_cast<float>(mSwapchainImageExtent.width),
                .height = static_cast<float>(mSwapchainImageExtent.height),
                .maxDepth = 1.0f
        };
    
        VkRect2D scissor{
                .extent = mSwapchainImageExtent
        };
    
        VkPipelineViewportStateCreateInfo pipelineViewportStateCreateInfo{
                .sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO,
                .viewportCount = 1,
                .pViewports = &viewport,
                .scissorCount = 1,
                .pScissors = &scissor
        };
    
        VkPipelineRasterizationStateCreateInfo pipelineRasterizationStateCreateInfo{
                .sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO,
                .polygonMode = VK_POLYGON_MODE_FILL,
                .cullMode = VK_CULL_MODE_NONE,
                .lineWidth = 1.0f
        };
    
        VkPipelineMultisampleStateCreateInfo pipelineMultisampleStateCreateInfo{
                .sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO,
                .rasterizationSamples = VK_SAMPLE_COUNT_1_BIT
        };
    
        VkPipelineDepthStencilStateCreateInfo pipelineDepthStencilStateCreateInfo{
                .sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO
        };
    
        VkPipelineColorBlendAttachmentState pipelineColorBlendAttachmentState{
                .colorWriteMask = VK_COLOR_COMPONENT_R_BIT |
                                  VK_COLOR_COMPONENT_G_BIT |
                                  VK_COLOR_COMPONENT_B_BIT |
                                  VK_COLOR_COMPONENT_A_BIT
        };
    
        VkPipelineColorBlendStateCreateInfo pipelineColorBlendStateCreateInfo{
                .sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO,
                .attachmentCount = 1,
                .pAttachments = &pipelineColorBlendAttachmentState
        };
    
        VkGraphicsPipelineCreateInfo graphicsPipelineCreateInfo{
                .sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,
                .stageCount = pipelineShaderStageCreateInfos.size(),
                .pStages = pipelineShaderStageCreateInfos.data(),
                .pVertexInputState = &pipelineVertexInputStateCreateInfo,
                .pInputAssemblyState = &pipelineInputAssemblyStateCreateInfo,
                .pViewportState = &pipelineViewportStateCreateInfo,
                .pRasterizationState = &pipelineRasterizationStateCreateInfo,
                .pMultisampleState = &pipelineMultisampleStateCreateInfo,
                .pDepthStencilState = &pipelineDepthStencilStateCreateInfo,
                .pColorBlendState = &pipelineColorBlendStateCreateInfo,
                .layout = mPipelineLayout,
                .renderPass = mRenderPass
        };
    
        VK_CHECK_ERROR(vkCreateGraphicsPipelines(mDevice,
                                                 VK_NULL_HANDLE,
                                                 1,
                                                 &graphicsPipelineCreateInfo,
                                                 nullptr,
                                                 &mPipeline));
    
        // ================================================================================
        // 19. Vertex VkBuffer 생성
        // ================================================================================
        constexpr array<Vertex, 3> vertices{
                Vertex{
                        .position{0.0, -0.5, 0.0},
                        .color{1.0, 0.0, 0.0}
                },
                Vertex{
                        .position{0.5, 0.5, 0.0},
                        .color{0.0, 1.0, 0.0}
                },
                Vertex{
                        .position{-0.5, 0.5, 0.0},
                        .color{0.0, 0.0, 1.0}
                },
        };
        constexpr VkDeviceSize vertexDataSize{vertices.size() * sizeof(Vertex)};
    
        VkBufferCreateInfo vertexBufferCreateInfo{
                .sType =VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,
                .size = vertexDataSize,
                .usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT
        };
    
        VK_CHECK_ERROR(vkCreateBuffer(mDevice, &vertexBufferCreateInfo, nullptr, &mVertexBuffer));
    
        // ================================================================================
        // 20. Vertex VkBuffer의 VkMemoryRequirements 얻기
        // ================================================================================
        VkMemoryRequirements vertexMemoryRequirements;
        vkGetBufferMemoryRequirements(mDevice, mVertexBuffer, &vertexMemoryRequirements);
    
        // ================================================================================
        // 21. Vertex VkDeviceMemory를 할당 할 수 있는 메모리 타입 인덱스 얻기
        // ================================================================================
        uint32_t vertexMemoryTypeIndex;
        VK_CHECK_ERROR(vkGetMemoryTypeIndex(mPhysicalDeviceMemoryProperties,
                                            vertexMemoryRequirements,
                                            VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
                                            VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
                                            &vertexMemoryTypeIndex));
    
        // ================================================================================
        // 22. Vertex VkDeviceMemory 할당
        // ================================================================================
        VkMemoryAllocateInfo vertexMemoryAllocateInfo{
                .sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO,
                .allocationSize = vertexMemoryRequirements.size,
                .memoryTypeIndex = vertexMemoryTypeIndex
        };
    
        VK_CHECK_ERROR(vkAllocateMemory(mDevice, &vertexMemoryAllocateInfo, nullptr, &mVertexMemory));
    
        // ================================================================================
        // 23. Vertex VkBuffer와 Vertex VkDeviceMemory 바인드
        // ================================================================================
        VK_CHECK_ERROR(vkBindBufferMemory(mDevice, mVertexBuffer, mVertexMemory, 0));
    
        // ================================================================================
        // 24. Vertex 데이터 복사
        // ================================================================================
        void* vertexData;
        VK_CHECK_ERROR(vkMapMemory(mDevice, mVertexMemory, 0, vertexDataSize, 0, &vertexData));
        memcpy(vertexData, vertices.data(), vertexDataSize);
        vkUnmapMemory(mDevice, mVertexMemory);
    }
    
    VkRenderer::~VkRenderer() {
        vkFreeMemory(mDevice, mVertexMemory, nullptr);
        vkDestroyBuffer(mDevice, mVertexBuffer, nullptr);
        vkDestroyDescriptorSetLayout(mDevice, mDescriptorSetLayout, nullptr);
        vkDestroyPipelineLayout(mDevice, mPipelineLayout, nullptr);
        vkDestroyPipeline(mDevice, mPipeline, nullptr);
        vkDestroyShaderModule(mDevice, mVertexShaderModule, nullptr);
        vkDestroyShaderModule(mDevice, mFragmentShaderModule, nullptr);
        for (auto framebuffer : mFramebuffers) {
            vkDestroyFramebuffer(mDevice, framebuffer, nullptr);
        }
        mFramebuffers.clear();
        vkDestroyRenderPass(mDevice, mRenderPass, nullptr);
        for (auto imageView : mSwapchainImageViews) {
            vkDestroyImageView(mDevice, imageView, nullptr);
        }
        mSwapchainImageViews.clear();
        vkDestroySemaphore(mDevice, mSemaphore, nullptr);
        vkDestroyFence(mDevice, mFence, nullptr);
        vkFreeCommandBuffers(mDevice, mCommandPool, 1, &mCommandBuffer);
        vkDestroyCommandPool(mDevice, mCommandPool, nullptr);
        vkDestroySwapchainKHR(mDevice, mSwapchain, nullptr);
        vkDestroySurfaceKHR(mInstance, mSurface, nullptr);
        vkDestroyDevice(mDevice, nullptr); // Device 파괴. queue의 경우 Device를 생성하면서 생겼기 때문에 따로 파괴하는 API가 존재하지 않는다.
        vkDestroyInstance(mInstance, nullptr);
    }
    
    void VkRenderer::render() {
        // ================================================================================
        // 1. 화면에 출력할 수 있는 VkImage 얻기
        // ================================================================================
        uint32_t swapchainImageIndex;
        VK_CHECK_ERROR(vkAcquireNextImageKHR(mDevice,
                                             mSwapchain,
                                             UINT64_MAX,
                                             VK_NULL_HANDLE,
                                             mFence,                 // Fence 설정
                                             &swapchainImageIndex)); // 사용 가능한 이미지 변수에 담기
        //auto swapchainImage = mSwapchainImages[swapchainImageIndex]; // swapchainImage에 더 이상 직접 접근하지 않으므로 이제 사용X
        auto framebuffer = mFramebuffers[swapchainImageIndex];
    
        // ================================================================================
        // 2. VkFence 기다린 후 초기화
        // ================================================================================
        // mFence가 Signal 될 때까지 기다린다.
        VK_CHECK_ERROR(vkWaitForFences(mDevice, 1, &mFence, VK_TRUE, UINT64_MAX));
        // mFence가 Siganl이 되면 vkResetFences를 호출해서 Fence의 상태를 다시 초기화한다.
        // 초기화하는 이유: vkAcquireNextImageKHR을 호출할 때 이 Fence의 상태는 항상 Unsignal 상태여야 하기 때문이다.
        VK_CHECK_ERROR(vkResetFences(mDevice, 1, &mFence));
    
        // ================================================================================
        // 3. VkCommandBuffer 초기화
        // ================================================================================
        vkResetCommandBuffer(mCommandBuffer, 0);
    
        // ================================================================================
        // 4. VkCommandBuffer 기록 시작
        // ================================================================================
        VkCommandBufferBeginInfo commandBufferBeginInfo{
                .sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO,
                .flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT // 한 번만 기록되고 다시 리셋 될 것이라는 의미
        };
    
        // mCommandBuffer를 기록중인 상태로 변경.
        VK_CHECK_ERROR(vkBeginCommandBuffer(mCommandBuffer, &commandBufferBeginInfo));
    
    
        // ================================================================================
        // 5. VkRenderPass 시작
        // ================================================================================
        VkRenderPassBeginInfo renderPassBeginInfo{
                .sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO,
                .renderPass = mRenderPass,
                .framebuffer = framebuffer,
                .renderArea{
                        .extent = mSwapchainImageExtent
                },
                .clearValueCount = 1,
                .pClearValues = &mClearValue
        };
    
        vkCmdBeginRenderPass(mCommandBuffer, &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
    
        // ================================================================================
        // 6. Graphics VkPipeline 바인드
        // ================================================================================
        vkCmdBindPipeline(mCommandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, mPipeline);
    
        // ================================================================================
        // 7. Vertex VkBuffer 바인드
        // ================================================================================
        VkDeviceSize vertexBufferOffset{0};
        vkCmdBindVertexBuffers(mCommandBuffer, 0, 1, &mVertexBuffer, &vertexBufferOffset);
    
        // ================================================================================
        // 8. 삼각형 그리기
        // ================================================================================
        vkCmdDraw(mCommandBuffer, 3, 1, 0, 0);
    
        // ================================================================================
        // 9. VkRenderPass 종료
        // ================================================================================
        vkCmdEndRenderPass(mCommandBuffer);
    
        // ================================================================================
        // 10. VkCommandBuffer 기록 종료
        // ================================================================================
        VK_CHECK_ERROR(vkEndCommandBuffer(mCommandBuffer)); // mCommandBuffer는 Executable 상태가 된다.
    
        // ================================================================================
        // 11. VkCommandBuffer 제출
        // ================================================================================
        VkSubmitInfo submitInfo{
                .sType = VK_STRUCTURE_TYPE_SUBMIT_INFO,
                .commandBufferCount = 1,
                .pCommandBuffers = &mCommandBuffer,
                .signalSemaphoreCount = 1,
                .pSignalSemaphores = &mSemaphore
        };
    
        // submitInfo 구조체를 넘김으로써 commandBuffer 정보를 queue에 제출
        VK_CHECK_ERROR(vkQueueSubmit(mQueue, 1, &submitInfo, VK_NULL_HANDLE));
    
        // ================================================================================
        // 12. VkImage 화면에 출력
        // ================================================================================
        VkPresentInfoKHR presentInfo{
                .sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR,
                .waitSemaphoreCount = 1,
                .pWaitSemaphores = &mSemaphore,
                .swapchainCount = 1,
                .pSwapchains = &mSwapchain,
                .pImageIndices = &swapchainImageIndex
        };
    
        VK_CHECK_ERROR(vkQueuePresentKHR(mQueue, &presentInfo)); // 화면에 출력.
        VK_CHECK_ERROR(vkQueueWaitIdle(mQueue));
    }

     

     

     

    '⭐ Vulkan & CMake > Vulkan' 카테고리의 다른 글

    [Vulkan] Vulkan Descriptor pool  (0) 2024.09.16
    [Vulkan] Hello Triangle  (0) 2024.09.14
    [Vulkan] Vulkan Memory  (0) 2024.09.12
    [Vulkan] Vulkan Buffer  (0) 2024.09.12
    [Vulkan] Vulkan Graphics pipeline 벌컨 그래픽스 파이프라인  (0) 2024.09.11