Vulkan에서 Image View는 이미지 리소스에 접근하기 위한 객체다. 이미지 자체는 Vulkan에서 메모리에 저장된 데이터이지만, 이 데이터를 셰이더에서 사용할 수 있게 하려면 Image View가 필요하다.

 

목차

     

     


     


    인프런 삼각형님의 '삼각형의 실전! Vulkan 중급' 강의를 참고하였습니다. 

    😎 [삼각형의 실전! Vulkan 중급] 강의 들으러 가기!

     

     

     

    Vulkan Image View


     

     

    Vulkan Image view란?

     

    • 그래픽스 파이프라인은 Vulkan Image를 직접 접근할 수 없다.
    • 그래픽스 파이프라인은 Vulkan Image view통해 Vulkan Image에 접근할 수 있다.
    • Vulkan Image view는 Vulkan Image에 대한 인터페이스 역할을 한다.

     

     

    VkImageViewCreateInfo 구조체

     

    typedef struct VkImageViewCreateInfo {
         VkStructureType sType;
         const void* pNext;
         VkImageViewCreateFlags flags;
         VkImage image;
         VkImageViewType viewType;
         VkFormat format;
         VkComponentMapping components;
         VkImageSubresourceRange subresourceRange;
    } VkImageViewCreateInfo;

     

    매개 변수  설명 
     sType   구조체 타입
     pNext   NULL 또는 확장 기능 구조체의 포인터
     flags   일단 0을 사용
     image   VkImage
     viewType   VkImageViewType
     format   VkFormat
     components   VkComponentMapping
     subresourceRange   VkImageSubresourceRange (이 구조체는 Pipeline barrier 때 쓴 구조체와 같다) 

     


     

     

    VkImageViewType 열거형

     

    typedef enum VkImageViewType {
         VK_IMAGE_VIEW_TYPE_1D = 0,
         VK_IMAGE_VIEW_TYPE_2D = 1,
         VK_IMAGE_VIEW_TYPE_3D = 2,
         VK_IMAGE_VIEW_TYPE_CUBE = 3,
         VK_IMAGE_VIEW_TYPE_1D_ARRAY = 4,
         VK_IMAGE_VIEW_TYPE_2D_ARRAY = 5,
         VK_IMAGE_VIEW_TYPE_CUBE_ARRAY = 6,
    } VkImageViewType;

     

    Vulkan Image view가 Vulkan Image를 어떻게 해석해야할지를 정의하는 열거형이다.

     

     

     

    Cubemap 이미지가 있다고 가정하자. CubeMap은 일반적으로 '2D 배열' 또는 '3D 이미지'로 정의된다.

     

    이 경우, Image View는 CubeMap의 이미지 한 면만 참조해서 2D Image View로 정의할 수 있다. 이렇게 VkImageViewType 열거형은 이미지를 유연하게 해석할 수 있게 한다.


     

     

    VkFormat 열거형

     

    typedef enum VkFormat {
         VK_FORMAT_UNDEFINED = 0,
         VK_FORMAT_R8G8B8A8_UNORM = 37,			// 부호없는 정규화된 8bit의 RGBA 채널을 가진 포맷
         VK_FORMAT_R8G8B8A8_SNORM = 38,			// 부호있는 정규화된 8bit의 RGBA 채널을 가진 포맷
         VK_FORMAT_R32G32_UINT = 101,
         VK_FORMAT_R32G32_SINT = 102,
         VK_FORMAT_R32G32_SFLOAT = 103,
         VK_FORMAT_R32G32B32_UINT = 104,		// 부호없는 32bit의 RGB 채널을 가진 포맷
         VK_FORMAT_R32G32B32_SINT = 105,		// 부호있는 32bit의 RGB 채널을 가진 포맷
         VK_FORMAT_R32G32B32_SFLOAT = 106,		// 부호있는 부동소수점 32bit의 RGB 채널을 가진 포맷
         VK_FORMAT_R32G32B32A32_UINT = 107,
         VK_FORMAT_R32G32B32A32_SINT = 108,
    } VkFormat;

     

    VkFormat은 Image View의 Format을 지정하는데 사용되면, 이는 데이터 타입과 채널 구성을 결정합니다. 

     


     

     

    VkComponentMapping 구조체

     

    typedef struct VkComponentMapping {
         VkComponentSwizzle r;
         VkComponentSwizzle g;
         VkComponentSwizzle b;
         VkComponentSwizzle a;
    } VkComponentMapping;

     

    색상 구성 요소를 어떻게 매핑할지 지정하는 구조체다.

    샘플링 과정에서 텍스처의 R, G, B, A가 쉐이더의 색상 변수어떻게 사용될지 결정한다.


     

     

    VkComponentMapping 구조체


    VkComponentSwizzle 열거형은 이미지의 각 색상 채널을 어떤 값으로 맵핑할지 결정한다.

    이 열거형을 사용해서 이미지를 쉐이더에서 다양한 방식으로 해석할 수 있도록 설정한다. 

     

    typedef enum VkComponentSwizzle {
         VK_COMPONENT_SWIZZLE_IDENTITY = 0,	// 원본 채널값을 그대로 사용  
         VK_COMPONENT_SWIZZLE_ZERO = 1,		// 모든 채널값을 0으로 매핑
         VK_COMPONENT_SWIZZLE_ONE = 2,		// 모든 채널값을 1으로 매핑
         VK_COMPONENT_SWIZZLE_R = 3,
         VK_COMPONENT_SWIZZLE_G = 4,
         VK_COMPONENT_SWIZZLE_B = 5,
         VK_COMPONENT_SWIZZLE_A = 6,
    } VkComponentSwizzle;

    ZERO로 설정하면 이미지의 원래 내용과는 상관없이 항상 해당 채널의 값이 0이 된다.

     


     

     

    Vulkan Image view 생성

     

    VkResult vkCreateImageView(
         VkDevice device,
         const VkImageViewCreateInfo* pCreateInfo,
         const VkAllocationCallbacks* pAllocator,
         VkImageView* pView);

     

    매개 변수  설명 
     device   VkDevice
     pCreateInfo   VkImageViewCreateInfo 변수의 포인터
     pAllocator   일단 NULL을 사용
     pView   VkImageView 변수의 포인터

     


     

     

    Vulkan Image view 파괴

     

    void vkDestroyImageView(
         VkDevice device,
         VkImageView imageView,
         const VkAllocationCallbacks* pAllocator);

     

    매개 변수  설명 
     device   VkDevice
     imageView   VkImageView
     pAllocator   일단 NULL을 사용

     




    코드

     

    #include ...
    using namespace std;
    
    VkRenderer::VkRenderer(ANativeWindow *window) {
        // 1. VkInstance 생성
        // 2. VkPhysicalDevice 선택
        // 3. VkDevice 생성
        // 4. VkSurface 생성
        // 5. VkSwapchain 생성
    
       	mSwapchainImageViews.resize(swapchainImageCount); // ImageView를 Swapchain의 개수만큼 생성
        for (auto i = 0; i != swapchainImageCount; ++i) {
            // ================================================================================
            // 6. VkImageView 생성
            // ================================================================================
            VkImageViewCreateInfo imageViewCreateInfo{ // 생성할 ImageView를 정의
                    .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
                    .image = mSwapchainImages[i],
                    .viewType = VK_IMAGE_VIEW_TYPE_2D,
                    .format = surfaceFormats[surfaceFormatIndex].format, // Swapchain 이미지 포맷과 동일한 포맷으로 설정
                    .components = {
                            .r = VK_COMPONENT_SWIZZLE_R,
                            .g = VK_COMPONENT_SWIZZLE_G,
                            .b = VK_COMPONENT_SWIZZLE_B,
                            .a = VK_COMPONENT_SWIZZLE_A,
                    },
                    .subresourceRange = { // 모든 이미지에 대해서 이 이미지 뷰가 접근할 수 있도록 설정
                            .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
                            .baseMipLevel = 0,
                            .levelCount = 1,
                            .baseArrayLayer = 0,
                            .layerCount = 1
                    }
            };
    
            VK_CHECK_ERROR(vkCreateImageView(mDevice,
                                             &imageViewCreateInfo,
                                             nullptr,
                                             &mSwapchainImageViews[i])); // mSwapchainImageViews[i] 생성
        }
        
        // 7. VkCommandPool 생성
        // 8. VkCommandBuffer 할당
        // 9. VkCommandBuffer 기록 시작
    
        for (auto swapchainImage : mSwapchainImages) { 
            // 10. VkImageLayout 변환
        }
        // 11. VkCommandBuffer 기록 종료
        // 12. VkCommandBuffer 제출
        // 13. VkFence 생성
        // 14. VkSemaphore 생성
    }
    
    VkRenderer::~VkRenderer() {
        for (auto imageView : mSwapchainImageViews) {
            vkDestroyImageView(mDevice, imageView, nullptr);
        }
        mSwapchainImageViews.clear();
        ...
    }
    
    void VkRenderer::render() {
        // 1. 화면에 출력할 수 있는 VkImage 얻기
        // 2. VkFence 기다린 후 초기화
        // 3. VkCommandBuffer 초기화
        // 4. VkCommandBuffer 기록 시작
        // 5. VkImageLayout 변환
        // 6. Clear 색상 갱신
        // 7. VkImage 색상 초기화
        // 8. VkImageLayout 변환
        // 9. VkCommandBuffer 기록 종료
        // 10. VkCommandBuffer 제출
        // 11. VkImage 화면에 출력
    }

     

    전체코드

    더보기
    // MIT License
    //
    // Copyright (c) 2024 Daemyung Jang
    //
    // Permission is hereby granted, free of charge, to any person obtaining a copy
    // of this software and associated documentation files (the "Software"), to deal
    // in the Software without restriction, including without limitation the rights
    // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
    // copies of the Software, and to permit persons to whom the Software is
    // furnished to do so, subject to the following conditions:
    //
    // The above copyright notice and this permission notice shall be included in all
    // copies or substantial portions of the Software.
    //
    // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
    // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
    // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
    // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
    // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
    // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
    // SOFTWARE.
    
    #include <cassert>
    #include <array>
    #include <vector>
    #include <iomanip>
    
    #include "VkRenderer.h"
    #include "VkUtil.h"
    #include "AndroidOut.h"
    
    using namespace std;
    
    VkRenderer::VkRenderer(ANativeWindow *window) {
        // ================================================================================
        // 1. VkInstance 생성
        // ================================================================================
        // VkApplicationInfo 구조체 정의
        VkApplicationInfo applicationInfo{
            .sType = VK_STRUCTURE_TYPE_APPLICATION_INFO,
            .pApplicationName = "Practice Vulkan",
            .applicationVersion = VK_MAKE_API_VERSION(0, 0, 1, 0),
            .apiVersion = VK_MAKE_API_VERSION(0, 1, 3, 0)
        };
    
        // 사용할 수 있는 레이어를 얻어온다.
        uint32_t instanceLayerCount;
        VK_CHECK_ERROR(vkEnumerateInstanceLayerProperties(&instanceLayerCount, nullptr));
    
        vector<VkLayerProperties> instanceLayerProperties(instanceLayerCount);
        VK_CHECK_ERROR(vkEnumerateInstanceLayerProperties(&instanceLayerCount,
                                                          instanceLayerProperties.data()));
    
        // 활성화할 레이어의 이름을 배열로 만든다.
        vector<const char*> instanceLayerNames;
        for (const auto &layerProperty : instanceLayerProperties) {
            instanceLayerNames.push_back(layerProperty.layerName);
        }
    
        uint32_t instanceExtensionCount; // 사용 가능한 InstanceExtension 개수
        VK_CHECK_ERROR(vkEnumerateInstanceExtensionProperties(nullptr,
                                                              &instanceExtensionCount,
                                                              nullptr));
    
        vector<VkExtensionProperties> instanceExtensionProperties(instanceExtensionCount);
        VK_CHECK_ERROR(vkEnumerateInstanceExtensionProperties(nullptr,
                                                              &instanceExtensionCount,
                                                              instanceExtensionProperties.data()));
    
        vector<const char *> instanceExtensionNames; // instanceExtensionName을 담는 배열
        for (const auto &properties: instanceExtensionProperties) {
            if (properties.extensionName == string("VK_KHR_surface") ||
                properties.extensionName == string("VK_KHR_android_surface")) {
                instanceExtensionNames.push_back(properties.extensionName);
            }
        }
        assert(instanceExtensionNames.size() == 2); // 반드시 2개의 이름이 필요하기 때문에 확인
    
        // sType: 구조체의 타입, pApplicationInfo: 어플리케이션의 이름
        // enabledLayerCount, ppEnableLayerNames: 사용할 레이어의 정보를 정의
        VkInstanceCreateInfo instanceCreateInfo{
            .sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO,
            .pApplicationInfo = &applicationInfo,
            .enabledLayerCount = static_cast<uint32_t>(instanceLayerNames.size()),
            .ppEnabledLayerNames = instanceLayerNames.data(),
            .enabledExtensionCount = static_cast<uint32_t>(instanceExtensionNames.size()),
            .ppEnabledExtensionNames = instanceExtensionNames.data()
        };
    
        // vkCreateInstance로 인스턴스 생성. 생성된 인스턴스가 mInstance에 쓰여진다.
        VK_CHECK_ERROR(vkCreateInstance(&instanceCreateInfo, nullptr, &mInstance));
    
    
        // ================================================================================
        // 2. VkPhysicalDevice 선택
        // ================================================================================
        uint32_t physicalDeviceCount;
        VK_CHECK_ERROR(vkEnumeratePhysicalDevices(mInstance, &physicalDeviceCount, nullptr));
    
        vector<VkPhysicalDevice> physicalDevices(physicalDeviceCount);
        VK_CHECK_ERROR(vkEnumeratePhysicalDevices(mInstance, &physicalDeviceCount, physicalDevices.data()));
    
        // 간단한 예제를 위해 첫 번째 VkPhysicalDevice를 사용
        mPhysicalDevice = physicalDevices[0];
    
        VkPhysicalDeviceProperties physicalDeviceProperties; // 이 구조체 안에 GPU에 필요한 모든 정보가 있다.
        vkGetPhysicalDeviceProperties(mPhysicalDevice, &physicalDeviceProperties);
    
        aout << "Selected Physical Device Information ↓" << endl;
        aout << setw(16) << left << " - Device Name: "
             << string_view(physicalDeviceProperties.deviceName) << endl;
        aout << setw(16) << left << " - Device Type: "
             << vkToString(physicalDeviceProperties.deviceType) << endl;
        aout << std::hex;
        aout << setw(16) << left << " - Device ID: " << physicalDeviceProperties.deviceID << endl;
        aout << setw(16) << left << " - Vendor ID: " << physicalDeviceProperties.vendorID << endl;
        aout << std::dec;
        aout << setw(16) << left << " - API Version: "
             << VK_API_VERSION_MAJOR(physicalDeviceProperties.apiVersion) << "."
             << VK_API_VERSION_MINOR(physicalDeviceProperties.apiVersion);
        aout << setw(16) << left << " - Driver Version: "
             << VK_API_VERSION_MAJOR(physicalDeviceProperties.driverVersion) << "."
             << VK_API_VERSION_MINOR(physicalDeviceProperties.driverVersion);
    
    
        // ================================================================================
        // 3. VkDevice 생성
        // ================================================================================
        uint32_t queueFamilyPropertiesCount;
    
        //---------------------------------------------------------------------------------
        //** queueFamily 속성을 조회
        // 사용 가능한 queueFamily의 수(=queueFamilyPropertiesCount)를 얻어온다.
        vkGetPhysicalDeviceQueueFamilyProperties(mPhysicalDevice, &queueFamilyPropertiesCount, nullptr);
    
        vector<VkQueueFamilyProperties> queueFamilyProperties(queueFamilyPropertiesCount);
        // 해당 queueFamily들의 속성을 배열에 얻어온다.
        vkGetPhysicalDeviceQueueFamilyProperties(mPhysicalDevice, &queueFamilyPropertiesCount, queueFamilyProperties.data());
        //---------------------------------------------------------------------------------
    
        // 특정 queueFamilyProperties가 VK_QUEUE_GRAPHICS_BIT를 지원하는지 확인.
        // 지원하는 queueFamilyProperties를 찾으면 break. queueFamily에 대한 정보는 mQueueFamilyIndex에 저장.
        for (mQueueFamilyIndex = 0;
             mQueueFamilyIndex != queueFamilyPropertiesCount; ++mQueueFamilyIndex) {
            if (queueFamilyProperties[mQueueFamilyIndex].queueFlags & VK_QUEUE_GRAPHICS_BIT) {
                break;
            }
        }
    
        // 생성할 큐를 정의
        const vector<float> queuePriorities{1.0};
        VkDeviceQueueCreateInfo deviceQueueCreateInfo{
                .sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO,
                .queueFamilyIndex = mQueueFamilyIndex,      // queueFamilyIndex
                .queueCount = 1,                            // 생성할 큐의 개수
                .pQueuePriorities = queuePriorities.data()  // 큐의 우선순위
        };
    
        uint32_t deviceExtensionCount; // 사용 가능한 deviceExtension 개수
        VK_CHECK_ERROR(vkEnumerateDeviceExtensionProperties(mPhysicalDevice,
                                                            nullptr,
                                                            &deviceExtensionCount,
                                                            nullptr));
    
        vector<VkExtensionProperties> deviceExtensionProperties(deviceExtensionCount);
        VK_CHECK_ERROR(vkEnumerateDeviceExtensionProperties(mPhysicalDevice,
                                                            nullptr,
                                                            &deviceExtensionCount,
                                                            deviceExtensionProperties.data()));
    
        vector<const char *> deviceExtensionNames;
        for (const auto &properties: deviceExtensionProperties) {
            if (properties.extensionName == string("VK_KHR_swapchain")) {
                deviceExtensionNames.push_back(properties.extensionName);
            }
        }
        assert(deviceExtensionNames.size() == 1); // VK_KHR_swapchain이 반드시 필요하기 때문에 확인
    
        // 생성할 Device 정의
        VkDeviceCreateInfo deviceCreateInfo{
                .sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO,
                .queueCreateInfoCount = 1,                   // 큐의 개수
                .pQueueCreateInfos = &deviceQueueCreateInfo, // 생성할 큐의 정보
                .enabledExtensionCount = static_cast<uint32_t>(deviceExtensionNames.size()),
                .ppEnabledExtensionNames = deviceExtensionNames.data() // 활성화하려는 deviceExtension들을 넘겨줌
        };
    
        // vkCreateDevice를 호출하여 Device 생성(= mDevice 생성)
        VK_CHECK_ERROR(vkCreateDevice(mPhysicalDevice, &deviceCreateInfo, nullptr, &mDevice));
        // 생성된 Device(= mDevice)로부터 큐를 vkGetDeviceQueue를 호출하여 얻어온다.
        vkGetDeviceQueue(mDevice, mQueueFamilyIndex, 0, &mQueue);
    
    
        // ================================================================================
        // 4. VkSurface 생성
        // ================================================================================
        VkAndroidSurfaceCreateInfoKHR surfaceCreateInfo{
                .sType = VK_STRUCTURE_TYPE_ANDROID_SURFACE_CREATE_INFO_KHR,
                .window = window
        };
    
        // surface 생성.
        VK_CHECK_ERROR(vkCreateAndroidSurfaceKHR(mInstance, &surfaceCreateInfo, nullptr, &mSurface));
    
        VkBool32 supported; // surface 지원 여부
        VK_CHECK_ERROR(vkGetPhysicalDeviceSurfaceSupportKHR(mPhysicalDevice,
                                                            mQueueFamilyIndex,
                                                            mSurface,
                                                            &supported)); // 지원 여부를 받아옴.
        assert(supported);
    
    
        // ================================================================================
        // 5. VkSwapchain 생성
        // ================================================================================
        VkSurfaceCapabilitiesKHR surfaceCapabilities;
        VK_CHECK_ERROR(vkGetPhysicalDeviceSurfaceCapabilitiesKHR(mPhysicalDevice,
                                                                 mSurface,
                                                                 &surfaceCapabilities));
    
        VkCompositeAlphaFlagBitsKHR compositeAlpha = VK_COMPOSITE_ALPHA_FLAG_BITS_MAX_ENUM_KHR;
        for (auto i = 0; i <= 4; ++i) {
            if (auto flag = 0x1u << i; surfaceCapabilities.supportedCompositeAlpha & flag) {
                compositeAlpha = static_cast<VkCompositeAlphaFlagBitsKHR>(flag);
                break;
            }
        }
        assert(compositeAlpha != VK_COMPOSITE_ALPHA_FLAG_BITS_MAX_ENUM_KHR);
    
        VkImageUsageFlags swapchainImageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT;
        assert(surfaceCapabilities.supportedUsageFlags & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT);
    
        uint32_t surfaceFormatCount = 0;
        VK_CHECK_ERROR(vkGetPhysicalDeviceSurfaceFormatsKHR(mPhysicalDevice,
                                                            mSurface,
                                                            &surfaceFormatCount,
                                                            nullptr));
    
        vector<VkSurfaceFormatKHR> surfaceFormats(surfaceFormatCount);
        VK_CHECK_ERROR(vkGetPhysicalDeviceSurfaceFormatsKHR(mPhysicalDevice,
                                                            mSurface,
                                                            &surfaceFormatCount,
                                                            surfaceFormats.data()));
    
        uint32_t surfaceFormatIndex = VK_FORMAT_MAX_ENUM;
        for (auto i = 0; i != surfaceFormatCount; ++i) {
            if (surfaceFormats[i].format == VK_FORMAT_R8G8B8A8_UNORM) {
                surfaceFormatIndex = i;
                break;
            }
        }
        assert(surfaceFormatIndex != VK_FORMAT_MAX_ENUM);
    
        uint32_t presentModeCount;
        VK_CHECK_ERROR(vkGetPhysicalDeviceSurfacePresentModesKHR(mPhysicalDevice,
                                                                 mSurface,
                                                                 &presentModeCount,
                                                                 nullptr));
    
        vector<VkPresentModeKHR> presentModes(presentModeCount);
        VK_CHECK_ERROR(vkGetPhysicalDeviceSurfacePresentModesKHR(mPhysicalDevice,
                                                                 mSurface,
                                                                 &presentModeCount,
                                                                 presentModes.data()));
    
        uint32_t presentModeIndex = VK_PRESENT_MODE_MAX_ENUM_KHR;
        for (auto i = 0; i != presentModeCount; ++i) {
            if (presentModes[i] == VK_PRESENT_MODE_FIFO_KHR) {
                presentModeIndex = i;
                break;
            }
        }
        assert(presentModeIndex != VK_PRESENT_MODE_MAX_ENUM_KHR);
    
        VkSwapchainCreateInfoKHR swapchainCreateInfo{
                .sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR,
                .surface = mSurface,
                .minImageCount = surfaceCapabilities.minImageCount,
                .imageFormat = surfaceFormats[surfaceFormatIndex].format,
                .imageColorSpace = surfaceFormats[surfaceFormatIndex].colorSpace,
                .imageExtent = surfaceCapabilities.currentExtent,
                .imageArrayLayers = 1,
                .imageUsage = swapchainImageUsage,
                .imageSharingMode = VK_SHARING_MODE_EXCLUSIVE,
                .preTransform = surfaceCapabilities.currentTransform,
                .compositeAlpha = compositeAlpha,
                .presentMode = presentModes[presentModeIndex]
        };
    
        VK_CHECK_ERROR(vkCreateSwapchainKHR(mDevice, &swapchainCreateInfo, nullptr, &mSwapchain));
    
        uint32_t swapchainImageCount;
        VK_CHECK_ERROR(vkGetSwapchainImagesKHR(mDevice, mSwapchain, &swapchainImageCount, nullptr));
    
        mSwapchainImages.resize(swapchainImageCount);
        VK_CHECK_ERROR(vkGetSwapchainImagesKHR(mDevice,
                                               mSwapchain,
                                               &swapchainImageCount,
                                               mSwapchainImages.data()));
    
    
        mSwapchainImageViews.resize(swapchainImageCount); // ImageView를 Swapchain의 개수만큼 생성
        for (auto i = 0; i != swapchainImageCount; ++i) {
            // ================================================================================
            // 6. VkImageView 생성
            // ================================================================================
            VkImageViewCreateInfo imageViewCreateInfo{ // 생성할 ImageView를 정의
                    .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
                    .image = mSwapchainImages[i],
                    .viewType = VK_IMAGE_VIEW_TYPE_2D,
                    .format = surfaceFormats[surfaceFormatIndex].format, // Swapchain 이미지 포맷과 동일한 포맷으로 설정
                    .components = {
                            .r = VK_COMPONENT_SWIZZLE_R,
                            .g = VK_COMPONENT_SWIZZLE_G,
                            .b = VK_COMPONENT_SWIZZLE_B,
                            .a = VK_COMPONENT_SWIZZLE_A,
                    },
                    .subresourceRange = { // 모든 이미지에 대해서 이 이미지 뷰가 접근할 수 있도록 설정
                            .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
                            .baseMipLevel = 0,
                            .levelCount = 1,
                            .baseArrayLayer = 0,
                            .layerCount = 1
                    }
            };
    
            VK_CHECK_ERROR(vkCreateImageView(mDevice,
                                             &imageViewCreateInfo,
                                             nullptr,
                                             &mSwapchainImageViews[i])); // mSwapchainImageViews[i] 생성
        }
    
        // ================================================================================
        // 7. VkCommandPool 생성
        // ================================================================================
        VkCommandPoolCreateInfo commandPoolCreateInfo{
                .sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO,
                .flags = VK_COMMAND_POOL_CREATE_TRANSIENT_BIT |           // command buffer가 자주 변경될 것임을 알려줌
                         VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT, // command buffer를 개별적으로 초기화 가능하게 설정
                .queueFamilyIndex = mQueueFamilyIndex
        };
    
        VK_CHECK_ERROR(vkCreateCommandPool(mDevice, &commandPoolCreateInfo, nullptr, &mCommandPool)); // mCommandPool 생성
    
        // ================================================================================
        // 8. VkCommandBuffer 할당
        // ================================================================================
        VkCommandBufferAllocateInfo commandBufferAllocateInfo{ // 할당하려는 command buffer 정의
                .sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO,
                .commandPool = mCommandPool,
                .level = VK_COMMAND_BUFFER_LEVEL_PRIMARY,
                .commandBufferCount = 1
        };
    
        VK_CHECK_ERROR(vkAllocateCommandBuffers(mDevice, &commandBufferAllocateInfo, &mCommandBuffer));
    
        // ================================================================================
        // 9. VkCommandBuffer 기록 시작
        // ================================================================================
        VkCommandBufferBeginInfo commandBufferBeginInfo{
                .sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO,
                .flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT // 한 번만 기록되고 다시 리셋 될 것이라는 의미
        };
    
        // mCommandBuffer를 기록중인 상태로 변경.
        VK_CHECK_ERROR(vkBeginCommandBuffer(mCommandBuffer, &commandBufferBeginInfo));
    
        for (auto swapchainImage : mSwapchainImages) { // 스왑체인 이미지만큼 for문을 돈다.
            // ================================================================================
            // 10. VkImageLayout 변환
            // ================================================================================
            VkImageMemoryBarrier imageMemoryBarrierForPresentSwapchainImage{
                    .sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,
                    .srcAccessMask = 0,
                    .dstAccessMask = 0,
                    .oldLayout = VK_IMAGE_LAYOUT_UNDEFINED,
                    .newLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR,
                    .srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
                    .dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
                    .image = swapchainImage,
                    .subresourceRange = {
                            .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
                            .baseMipLevel = 0,
                            .levelCount = 1,
                            .baseArrayLayer = 0,
                            .layerCount = 1
                    }
            };
    
            vkCmdPipelineBarrier(mCommandBuffer,
                                 VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
                                 VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
                                 0,
                                 0,
                                 nullptr,
                                 0,
                                 nullptr,
                                 1,
                                 &imageMemoryBarrierForPresentSwapchainImage);
        }
    
        // ================================================================================
        // 11. VkCommandBuffer 기록 종료
        // ================================================================================
        VK_CHECK_ERROR(vkEndCommandBuffer(mCommandBuffer)); // mCommandBuffer는 Executable 상태가 된다.
    
        // ================================================================================
        // 12. VkCommandBuffer 제출
        // ================================================================================
        VkSubmitInfo submitInfo{
                .sType = VK_STRUCTURE_TYPE_SUBMIT_INFO,
                .commandBufferCount = 1,
                .pCommandBuffers = &mCommandBuffer
        };
    
        // submitInfo 구조체를 넘김으로써 commandBuffer 정보를 queue에 제출
        VK_CHECK_ERROR(vkQueueSubmit(mQueue, 1, &submitInfo, VK_NULL_HANDLE));
        // commandBuffer를 vkQueueSubmit에 제출했지만 해당 Command buffer가 실행이 됐을지 안 됐을지 알 수 없다. CPU와 GPU는 따로따로 돌기 때문에 항상 실행이 됐다는 보장을 할 수 없다. 그래서 이를 보장하기 위해 vkQueueWaitIdle를 호출하여 이 queue에 제출한 Command buffer가 모두 다 실행되는 것을 보장한다.
        VK_CHECK_ERROR(vkQueueWaitIdle(mQueue));
    
    
        // ================================================================================
        // 13. VkFence 생성
        // ================================================================================
        VkFenceCreateInfo fenceCreateInfo{
            .sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO
        }; // 생성할 Fence의 정보를 해당 구조체에서 정의
    
        VK_CHECK_ERROR(vkCreateFence(mDevice, &fenceCreateInfo, nullptr, &mFence)); // mFence 생성. flag에 아무것도 넣어주지 않았기 때문에 생성된 Fence의 초기 상태는 Unsignal 상태다.
    
    
        // ================================================================================
        // 14. VkSemaphore 생성
        // ================================================================================
        VkSemaphoreCreateInfo semaphoreCreateInfo{
                .sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO,
        };
    
        VK_CHECK_ERROR(vkCreateSemaphore(mDevice, &semaphoreCreateInfo, nullptr, &mSemaphore));
    }
    
    VkRenderer::~VkRenderer() {
        for (auto imageView : mSwapchainImageViews) {
            vkDestroyImageView(mDevice, imageView, nullptr);
        }
        mSwapchainImageViews.clear();
        vkDestroySemaphore(mDevice, mSemaphore, nullptr);
        vkDestroyFence(mDevice, mFence, nullptr);
        vkFreeCommandBuffers(mDevice, mCommandPool, 1, &mCommandBuffer);
        vkDestroyCommandPool(mDevice, mCommandPool, nullptr);
        vkDestroySwapchainKHR(mDevice, mSwapchain, nullptr);
        vkDestroySurfaceKHR(mInstance, mSurface, nullptr);
        vkDestroyDevice(mDevice, nullptr); // Device 파괴. queue의 경우 Device를 생성하면서 생겼기 때문에 따로 파괴하는 API가 존재하지 않는다.
        vkDestroyInstance(mInstance, nullptr);
    }
    
    void VkRenderer::render() {
        // ================================================================================
        // 1. 화면에 출력할 수 있는 VkImage 얻기
        // ================================================================================
        uint32_t swapchainImageIndex;
        VK_CHECK_ERROR(vkAcquireNextImageKHR(mDevice,
                                             mSwapchain,
                                             UINT64_MAX,
                                             VK_NULL_HANDLE,
                                             mFence,                 // Fence 설정
                                             &swapchainImageIndex)); // 사용 가능한 이미지 변수에 담기
        auto swapchainImage = mSwapchainImages[swapchainImageIndex];
    
        // ================================================================================
        // 2. VkFence 기다린 후 초기화
        // ================================================================================
        // mFence가 Signal 될 때까지 기다린다.
        VK_CHECK_ERROR(vkWaitForFences(mDevice, 1, &mFence, VK_TRUE, UINT64_MAX));
        // mFence가 Siganl이 되면 vkResetFences를 호출해서 Fence의 상태를 다시 초기화한다.
        // 초기화하는 이유: vkAcquireNextImageKHR을 호출할 때 이 Fence의 상태는 항상 Unsignal 상태여야 하기 때문이다.
        VK_CHECK_ERROR(vkResetFences(mDevice, 1, &mFence));
    
        // ================================================================================
        // 3. VkCommandBuffer 초기화
        // ================================================================================
        vkResetCommandBuffer(mCommandBuffer, 0);
    
        // ================================================================================
        // 4. VkCommandBuffer 기록 시작
        // ================================================================================
        VkCommandBufferBeginInfo commandBufferBeginInfo{
                .sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO,
                .flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT // 한 번만 기록되고 다시 리셋 될 것이라는 의미
        };
    
        // mCommandBuffer를 기록중인 상태로 변경.
        VK_CHECK_ERROR(vkBeginCommandBuffer(mCommandBuffer, &commandBufferBeginInfo));
    
        // ================================================================================
        // 5. VkImageLayout 변환
        // ================================================================================
        VkImageMemoryBarrier imageMemoryBarrierForClearColorImage{
                .sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,
                .srcAccessMask = VK_ACCESS_NONE,
                .dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT,
                .oldLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR,
                .newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
                .srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
                .dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
                .image = swapchainImage,
                .subresourceRange = {
                        .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
                        .baseMipLevel = 0,
                        .levelCount = 1,
                        .baseArrayLayer = 0,
                        .layerCount = 1
                }
        };
    
        vkCmdPipelineBarrier(mCommandBuffer,
                             VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
                             VK_PIPELINE_STAGE_TRANSFER_BIT,
                             0,
                             0,
                             nullptr,
                             0,
                             nullptr,
                             1,
                             &imageMemoryBarrierForClearColorImage);
    
        // ================================================================================
        // 6. Clear 색상 갱신
        // ================================================================================
        for (auto i = 0; i != 4; ++i) {
            mClearColorValue.float32[i] = fmodf(mClearColorValue.float32[i] + 0.01, 1.0);
        }
    
        // ================================================================================
        // 7. VkImage 색상 초기화
        // ================================================================================
        VkImageSubresourceRange imageSubresourceRange{
                .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
                .baseMipLevel = 0,
                .levelCount = 1,
                .baseArrayLayer = 0,
                .layerCount = 1
        };
    
        vkCmdClearColorImage(mCommandBuffer,
                             swapchainImage,
                             VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
                             &mClearColorValue,
                             1,
                             &imageSubresourceRange);
    
        // ================================================================================
        // 8. VkImageLayout 변환
        // ================================================================================
        VkImageMemoryBarrier imageMemoryBarrierForPresentSwapchainImage{
                .sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,
                .srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT,
                .dstAccessMask = 0,
                .oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
                .newLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR,
                .srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
                .dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
                .image = swapchainImage,
                .subresourceRange = {
                        .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
                        .baseMipLevel = 0,
                        .levelCount = 1,
                        .baseArrayLayer = 0,
                        .layerCount = 1
                }
        };
    
        vkCmdPipelineBarrier(mCommandBuffer,
                             VK_PIPELINE_STAGE_TRANSFER_BIT,
                             VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
                             0,
                             0,
                             nullptr,
                             0,
                             nullptr,
                             1,
                             &imageMemoryBarrierForPresentSwapchainImage);
    
    
        // ================================================================================
        // 9. VkCommandBuffer 기록 종료
        // ================================================================================
        VK_CHECK_ERROR(vkEndCommandBuffer(mCommandBuffer)); // mCommandBuffer는 Executable 상태가 된다.
    
    
        // ================================================================================
        // 10. VkCommandBuffer 제출
        // ================================================================================
        VkSubmitInfo submitInfo{
                .sType = VK_STRUCTURE_TYPE_SUBMIT_INFO,
                .commandBufferCount = 1,
                .pCommandBuffers = &mCommandBuffer,
                .signalSemaphoreCount = 1,
                .pSignalSemaphores = &mSemaphore
        };
    
        // submitInfo 구조체를 넘김으로써 commandBuffer 정보를 queue에 제출
        VK_CHECK_ERROR(vkQueueSubmit(mQueue, 1, &submitInfo, VK_NULL_HANDLE));
        // commandBuffer를 vkQueueSubmit에 제출했지만 해당 Command buffer가 실행이 됐을지 안 됐을지 알 수 없다. CPU와 GPU는 따로따로 돌기 때문에 항상 실행이 됐다는 보장을 할 수 없다. 그래서 이를 보장하기 위해 vkQueueWaitIdle를 호출하여 이 queue에 제출한 Command buffer가 모두 다 실행되는 것을 보장한다.
        VK_CHECK_ERROR(vkQueueWaitIdle(mQueue));
    
    
        // ================================================================================
        // 11. VkImage 화면에 출력
        // ================================================================================
        VkPresentInfoKHR presentInfo{
                .sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR,
                .swapchainCount = 1,
                .pWaitSemaphores = &mSemaphore,
                .swapchainCount = 1,
                .pSwapchains = &mSwapchain,
                .pImageIndices = &swapchainImageIndex
        };
    
        VK_CHECK_ERROR(vkQueuePresentKHR(mQueue, &presentInfo)); // 화면에 출력.
    }

     

    '⭐ Vulkan & CMake > Vulkan' 카테고리의 다른 글

    [Vulkan] Vulkan Framebuffer  (0) 2024.09.10
    [Vulkan] Vulkan Render pass  (0) 2024.08.16
    [Vulkan] Color Animation, Vulkan Semaphore  (0) 2024.08.14
    [Vulkan] Vulkan Pipeline barrier  (0) 2024.08.08
    [Vulkan] Vulkan Image Layer  (0) 2024.08.08